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Overview
• Parallel programming research 

started in mid-60’s
• Goal:

– Productivity for Joe: abstractions 
to hide complexity of parallel 
hardware

– Performance from Stephanie: 
implement abstractions efficiently

What should these abstractions be        
and how are they implemented?

• Yesterday: 
– Six lessons from the past

• Today:
– Model for parallelism and locality

• Tomorrow:
– Research challenges

Joe

Stephanie

“Scalable” parallel programming:
few Stephanies, many Joes



(1) It’s better to be wrong once in a while 
than to be right all the time.



Impossibility of exploiting ILP: [c. 1972]

“..Therefore, we must reject the possibility of bypassing conditional jumps 
as being of substantial help in speeding up execution of programs. 
In fact, our results seem to indicate that even very large amounts of 
hardware applied to programs at runtime do not generate hemibel (> 3x) 
improvements in execution speed.” 

Riseman and Foster, IEEE Trans. Computers, 1972

Flynn bottleneck



Exploiting ILP [Fisher, Rau c.1982]

• Key idea: 
– Branch speculation
– Dynamic branch prediction [Smith,Patt]
– Backup/re-execute if prediction is wrong

• Infallibility is for popes, not parallel 
computing

• Broader lesson:
– Runtime parallelization: essential in 

spite of overhead and wasted work
– Compilers: only part of the solution to 

exploiting parallelism



(2) Aunque la mona se vista de seda, 
mona se queda.

Dependence graphs are not the right foundation 
for parallel programming



Thread-level parallelism

Computation graph for G-S:
[Karp and Miller, 1966]

• Dependence graph 
[Karp/Miller66,Dennis 68,Kuck72]
– Nodes: tasks, edges: ordering of tasks
– Independent operations: execute in parallel

• Dependence-based parallelization
– Program analysis [Kuck72,Feautrier92]: 

stencils, FFT, dense linear algebra
– Inspector-executor [Duff/Reid77,Saltz90]: 

sparse linear algebra
– Thread-level speculation 

[Jefferson81,Rauchwerger/Padua95]: executor-
inspector

• Works well for HPC programs
• Key assumptions:

– Gold standard is a sequential program
– Dependences must be removed/respected by 

parallel execution

Gauss-Seidel: 5-point stencil



Beyond HPC
• Many graph algorithms

– Tasks can generate and kill other tasks
– Unordered: tasks can be executed in 

any order in spite of conflicts
– Output may be different for different 

execution orders, all acceptable

Don’t-care non-determinism
– Arises from under-specification of 

execution order

• My opinion:
– Dependence graphs are not right 

abstraction for such algorithms
– No gold standard sequential program

• Questions:
– What is the right abstraction?
– Relation to dependence graphs?

Delaunay mesh refinement
Red Triangle: badly shaped triangle
Blue triangles: cavity of bad triangle



(3) Study algorithms and data structures, 
not programs*.

* Wirth: Algorithm + Data structure = Program 



Program for DMR Algorithm + Data structure

Programs vs. Algorithms + Data structures



(4) Algorithms should be expressed using 
data-centric abstractions.

Operator formulation of algorithms



von Neumann programming model

……….

initial
state

final
state

state
update

Algorithm

State update: assignment statement
(local view)

Schedule: control-flow constructs
(global view)

von Neumann bottleneck [Backus 79] 



Operator formulation

: active node
: neighborhood

i1

i2

i3

Algorithm

State update:
(local view)

Schedule
(global view)

Location
(where?)

Ordering
(when?)

Topology-driven

Data-driven

Unordered

Ordered
No distinction between sequential/parallel, regular/irregular algorithms
Unifies seemingly different algorithms for same problem

Operator



Joe: specifying unordered algorithms

14

• Set iterator: [Schwartz70]

– don’t-care non-determinism: 
implementation free to 
iterate over set in any order

– optional soft priorities on 
elements (cf. OpenMP)

• Captures the “freedom” in 
unordered algorithms

W:set

state

e

B€B(e)

for each e in W:set  do
B(e)  //state update



Parallelism

• Memory model:
– When do writes by one activity become visible to other activities?

• Two popular models:
– Bulk-synchronous Parallel(BSP) [Valiant 90]
– Transactional semantics [everyone else]

• How should transactional semantics for operators be implemented 
by Stephanie?
– One possibility: Transactional Memory(TM) [Herlihy/Moss, Harris]

Memory model

BSP

i1

i2

i3

Transactional
semantics



(5)  Exploit context and structure for efficiency.

Construct

Implementation

?

Tailor-made solutions are better than ready-made solutions.



for  (int i=0; i<N; i++) {

}

RISC vs. CISC [c. 80’s-90’s]
• CISC philosophy: 

– Map high-level language (HLL) 
idioms directly to instructions 
and addressing modes

– Makes compiler’s job easier

• RISC philosophy:
– Minimalist ISA
– Sophisticated compiler 

generated code for HLL 
constructs tailored to 

• program context 
• structure

…..a[i]…..

Exploiting context for efficiency



Transactional semantics: 
exploiting context

Optimistic parallelization    
(Time-warp)

Interference graph 
(DMR, chaotic SSSP)

Inspector-executor 
(SGD,sparse LA)

Dependence graphs
(stencils,dense LA)

Compile-time

After input
is given

During program
execution

After program 
is finished

Binding time: when are active nodes and neighborhoods known?

i1

i2

i3



Transactional semantics:
exploiting structure

• Operators have structure
– Cautious operators: read entire neighborhood before any 

write, so no need to track writes
– Detect conflicts at ADT level, not memory level 

• Generate customized code using atomic 
instructions
– RISC-like approach to ensuring transactional semantics



(6) The difference between theory and practice
is smaller in theory than in practice.

McKinsey & Co: “So what?”



Galois: Performance on SGI Ultraviolet

Lenharth et al. : IEEE Computer Aug 2015



Galois: Graph analytics

• Galois lets you code more effective algorithms for graph 
analytics than DSLs like PowerGraph (left figure)

• Easy to implement APIs for graph DSLs on top on Galois and 
exploit better infrastructure (few hundred lines of code for 
PowerGraph and Ligra) (right figure)

“A lightweight infrastructure for graph analytics” Nguyen, Lenharth, Pingali (SOSP 2013)



FPGA Tools

Moctar & Brisk,  “Parallel FPGA Routing based on the Operator Formulation” 
DAC 2014



Domani



Research problems
• Heterogeneity/energy/etc.

– Multicores/GPUs/FPGAs
• Synthesize parallel implementations from specifications

– SMT solvers [Gulwani], planning [Prountzos15] 
• Fault tolerance

– Contract between hardware and software?
– Need more sophisticated techniques than CPR [Spark]
– Exploit program structure to tailor fault tolerance?

• Correctness
– Formally verified compilers [Hoare/Misra, Coq]
– Proofs are programs: what does this mean for us?

• Inexact computing
– Customized consistency models [parameter server in ML]
– Principled approximate computing [Rinard,Demmel]



“Pessimism of the intellect, optimism of the will”
Antonio Gramsci (1891-1937)

Patron saint of parallel programming



Lessons
• It’s better to be wrong once in a while than to be right all the time.

– Runtime parallelization essential in spite of overheads and wasted 
work.

• Aunque la mona se vista de seda, mona se queda.
– Dependence graphs are not the right foundation for parallel

programming.
• Study algorithms and data structures, not programs.

– Leads to a deeper understanding of program behavior
• Algorithms should be structured using data-centric abstractions.

– Parallel program = Operator + Schedule + Parallel data structure
• Exploit context and structure for efficiency.

– Tailor-made solutions are usually better than ready-made solutions
• The difference between theory and practice is smaller in theory

than in practice.
– Always ask yourself “So what?”


