
Beyond the Embarrassingly Parallel

New Languages, Compilers, and Runtimes for Big-Data Processing

Madan Musuvathi

Microsoft Research

Joint work with

Mike Barnett (MSR), Saeed Maleki (MSR), Todd Mytkowicz (MSR)

Yufei Ding (N.C.State), Daniel Lupei (EPFL), Charith Mendis (MIT),

Mathias Peters (Humboldt Univ.), Veselin Raychev (EPFL)

parallelism

parallelism
=

independent computation

can we parallelize

dependent computation?

“Inherently sequential” code is common

log processing

event-series pattern matching

machine learning algorithms

dynamic programming

...

F G H …

Running example: processing click logs

S R R R S R S R R R R R P S Rclick log:

influential reviews:

S R+ P

search review purchase

problem: count influential reviews in the log

Running example: processing click logs

S R R R S R S R R R R R P S Rclick log:

bool search_done = false; int num_reviews = 0; int sum = 0;

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

influential reviews:

S R+ P

Loop carried state

Extracting parallelism from dependent computations

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

S R R P R S R R R R R R P R P

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

(false, 0, 0)

(true, 1, 2)

(false, 1, 8)

// loop-carried state:

// (search_done, num_reviews, sum)

Extracting parallelism from dependent computations

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

(false, 0, 0) (true, 1, 2) summary = F(sd, nr, s)

(sd, nr, s)

output = F(true, 1, 2)

S R R P R S R R R R R R P R P

= (false, 1, 8)

F(sd, nr, s) = (false, nr+6, sd ? s+nr+5 : s)// loop-carried state:

// (search_done, num_reviews, sum)

Recipe for breaking dependences

1. replace dependences with symbolic unknowns

2. compute symbolic summaries in parallel

3. combine symbolic summaries

success depends on

1. fast symbolic execution

2. generation of concise summaries

F G H

x x

g(x) h(x)f

output = h(g(f))

research challenges :

1. identifying “compressible” computation

2. using domain-specific structure

3. automating the parallelization

Successful applications of this methodology

finite-state machines [ASPLOS ’14]
- regular expression matching, Huffman decoding, …
- 3x faster on a single core, linear speedup on multiple cores

dynamic programming [PPoPP ‘14, TOPC ’15, ICASSP ‘16]
- linear speedup beyond the previous-best software Viterbi decoder
- 7x speedup over state-of-the-art speech decoder

large-scale data processing [SOSP ’15]
- automatically parallelizable language for temporal analysis

relational databases
- optimize sessionization & windowed aggregates
- 10x improvement over SQL server

machine learning
- parallel stochastic gradient descent

part 1 of the talk

part 2 of the talk

Auto-Parallelization Across Dependences
Large-scale data processing

Relational abstractions for data processing

map, reduce, join, filter, group-by

expressive, simple, and declarative

automatically parallelizable

decades of work on optimizations

filter

group-by

3 3

count

select count(*)
from objects
where type = square
group by color

Forces pushing beyond relational abstractions

queries today = relational skeleton + non-relational logic

embarrassingly parallel

optimized

not parallel

not optimized

temporal, iterative, stateful
- log analysis

- sessionization

- machine learning

Map-Reduce example

S R R S P R R P S R R S P R S P S R R S P R R P

S

R

P

S

R

P

users can:

search

review

purchase

weblog

Count the number of reviews read per user
S R R S P R R P S R R S P R P S S R R S P R R P

S R R S P R R P S R R S P R P S S R R S P R R P

mapper1 mapper2

R R R R R R R R R R R

R R RR R R R R R R Rreducer1 reducer2

sum sum

7 4

psum psum psum psum

3 3 4 1

3 34 1

Count influential reviews (SR+P) per user

S R R S P R R P S R R S R R P R S R R R P R P P

S R R P R P S R R R R R P R P PS R S R R P S R

parallel

match

parallel

match
match SR*Pmatch SR*P

parallel

match

parallel

match

match

summary

match

summary

match

summary

match

summary

match

summary

match

summary

match

summary

match

summary

combine combine

reduce data shuffled from terabytes to gigabytes

SymPLE [SOSP ‘15]

a language for specifying nonrelational parts of data-processing queries
a subset of C++

automatically parallelize sequential code

expose additional parallelism to query optimizer

up to 2 orders of magnitude efficiency improvement

Count influential reviews

bool search_done = false;
int num_reviews = 0;
int sum = 0;

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

Count influential reviews

SymBool search_done = false;
SymInt num_reviews = 0;
SymInt sum = 0;

for each record in input
switch record.type:
case SEARCH: if (!search_done) { num_reviews = 0;

search_done = true; }
case REVIEW: num_reviews++;

case PURCHASE: if (search_done) { search_done = false;
sum += num_reviews; }

user uses symbolic data types

for loop carried state

overloaded operators encode

efficient symbolic decision

procedures for generating

symbolic summaries

Computing max in parallel

max is, of course, associative

but this is not apparent from code

SymPLE can parallelize this code

SymInt curr_max = 0;

for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

Parallelize by breaking dependences

output = G(F(8))

2 8 1 5 3 9 8 2 1

for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

8

x

0

for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

F(x)

x for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

G(x)

Parallelize by breaking dependences

5 3 9

x for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

F(x)

SymInt max = x;
for each num_reviews in (5,3,9)

if (max < num_reviews)
max = num_reviews;

max = 𝒙

< 5?

max = 5

max = 𝒙

max = 𝒙

max = 9 max = 𝒙

< 9?

< 3?< 3?

max = 5

< 9?

max = 9

Infeasible

if (max < 5)

if (max < 3)

if (max < 9)

max = 5;

max = 3;

max = 9;

iter 1

iter 2

iter 3

𝒙 < 𝟓 𝒙 ≥ 𝟓

𝒙 ≥ 𝟑

𝒙 ≥ 𝟗𝟓 ≤ 𝒙 < 𝟗

𝒙 < 𝟗 ⇒ 𝒎𝒂𝒙 = 𝟗 𝒙 ≥ 𝟗 ⇒ 𝒎𝒂𝒙 = 𝒙

no branching
when state
becomes
concrete

equivalent
paths can be

merged

decision
procedure

prunes infeasible
paths

2 8 1 5 3 9 8 2 1

for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

8

x

0

for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

x for each num_reviews in input
if (curr_max < num_reviews)

curr_max = num_reviews;

𝑥 < 9 ⇒ curr_max = 9
𝑥 ≥ 9 ⇒ curr_max = 𝑥

𝑥 < 8 ⇒ curr_max = 8
𝑥 ≥ 8 ⇒ curr_max = 𝑥

Parallelize by breaking dependences

Single machine throughput

Query 1 Query 2 Query 3 Query 4

Sequential Symbolic execution

1, 2 and 4 threads
throughput

MB/s

overhead

from

symbolic

execution

Reduction in data movement

data shuffled from mappers to reducers

megabytes

Query

1

Query

2

Query

3

Query

4

MapReduce SymPLE 172x reduction

Challenge

can we develop new abstractions for future data-processing needs?
- move beyond embarrassingly parallel

- automatically parallelizable

perform whole query optimizations
- unify relational and non-relational parts

- extract filters, project unused parts of data, …

Manual Parallelization Across Dependences
Dynamic Programming

Speech decoders

GMM/DNN

Speech Signal

/p/ee/p/aw/p/

Phonemes

HMM

Recognized Text

Sequential bottleneck

“PPoPP”

Viterbi algorithm for Hidden Markov Models (HMM)

finds the most likely sequence of hidden states that explain an observation

𝑝0

𝑝1

𝑝2

𝑠

time

hidden states

=

language model

states

recurrence equation :

𝑃𝑡 𝑠 = max
𝑝∈𝑝𝑟𝑒𝑑(𝑠)

𝑃𝑡−1 𝑝 + 𝑇𝑃𝑡(𝑝 → 𝑠)

Dynamic programming computes a sequence of stages

Viterbi LCS (diff)

𝑝0

𝑝1

𝑝2

𝑠

𝑝0

𝑝2

𝑝1

𝑠

stage = column stage = anti-diagonal

Our focus: parallelization across stages

𝑆𝑡 𝑖 = max
𝑗

(𝑆𝑡−1 𝑗 + 𝑐𝑡,𝑖,𝑗)

𝑆𝑡 = A⊙ 𝑆𝑡−1

Stage 𝑆1
𝑆𝑖 𝑆𝑛

𝑃1 𝑃2

where ⊙ is matrix multiplication in tropical semiring

Solution in terms of finding shortest-paths
source

dest

Solution in terms of finding shortest-paths

dest
all

dest

all

src

all

dest

all

src
src

parallelization cost = size of stages

Shortest paths converge to optimal routes

Convergence in LCS

8

16

32

64

128

256

512

1 2 4 8 16 32

m
b

s

Threads

Speed of Viterbi Decoder on CDMA

Series1 Series2 Series3 Series4 Series5

Summary

parallelizable

computation

automatic

manual

finite-state computation

event-series pattern matching

linear stochastic-gradient descent

linear-tropical dynamic programming

sessionization/windowed aggregates

Viterbi/speech decoding

your favorite problem?

“inherently sequential” ⇒ “embarrassingly parallel”

