Beyond the Embarrassingly Parallel New Languages, Compilers, and Runtimes for Big-Data Processing

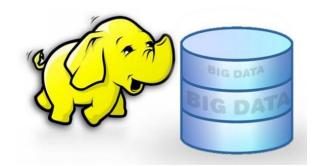
Madan Musuvathi

Microsoft Research

Joint work with

Mike Barnett (MSR), Saeed Maleki (MSR), Todd Mytkowicz (MSR) Yufei Ding (N.C.State), Daniel Lupei (EPFL), Charith Mendis (MIT), Mathias Peters (Humboldt Univ.), Veselin Raychev (EPFL)

parallelism



parallelism

independent computation

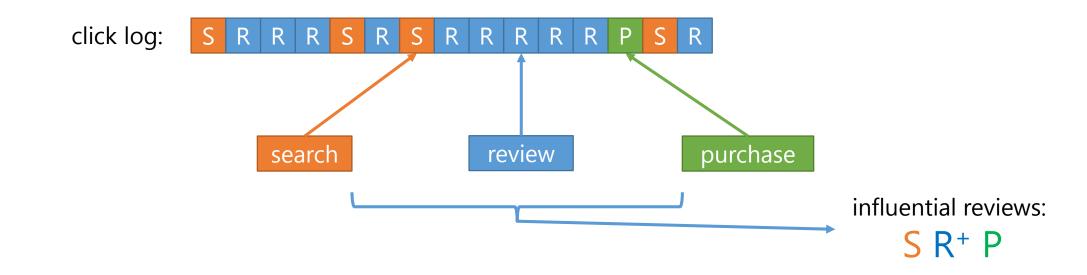
can we parallelize dependent computation?

"Inherently sequential" code is common

log processing event-series pattern matching machine learning algorithms dynamic programming

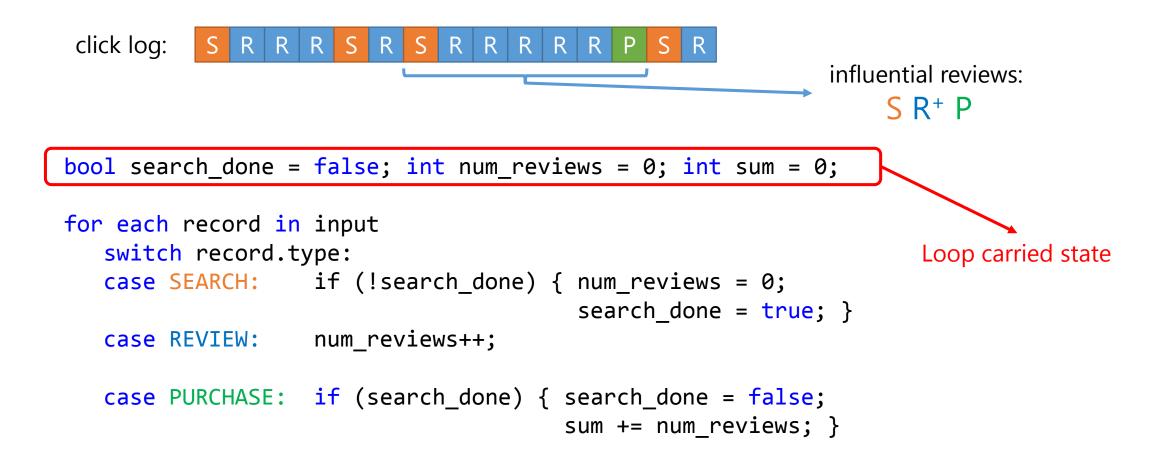
•••

Running example: processing click logs



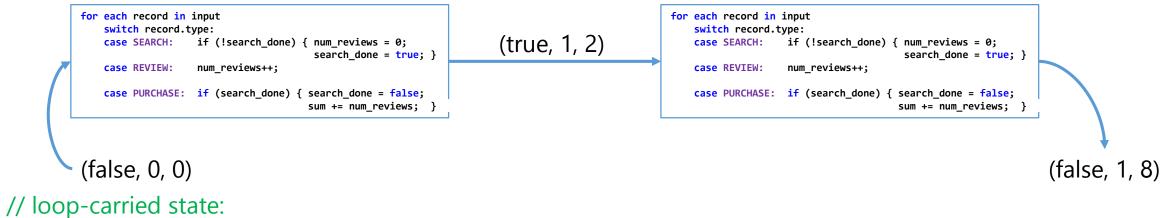
problem: count influential reviews in the log

Running example: processing click logs



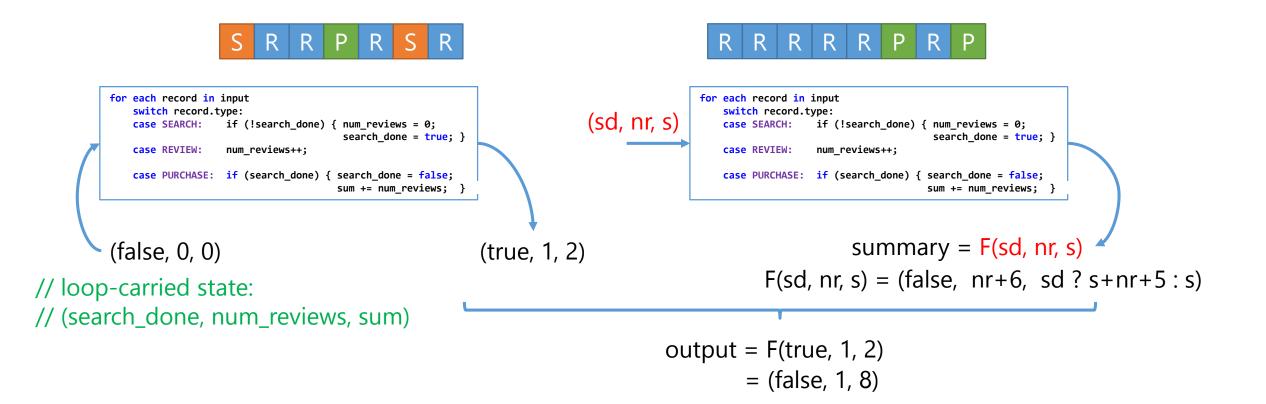
Extracting parallelism from dependent computations

S R R P R S R R R R R R P R P



// (search_done, num_reviews, sum)

Extracting parallelism from dependent computations



Recipe for breaking dependences

- 1. replace dependences with symbolic unknowns
- 2. compute symbolic summaries in parallel
- 3. combine symbolic summaries

success depends on

- 1. fast symbolic execution
- 2. generation of concise summaries

 $F \qquad G \qquad H \qquad h(x)$ $f \qquad g(x) \qquad h(x)$ output = h(g(f))

research challenges :

- 1. identifying "compressible" computation
- 2. using domain-specific structure
- 3. automating the parallelization

Successful applications of this methodology

finite-state machines [ASPLOS '14]

- regular expression matching, Huffman decoding, ...
- 3x faster on a single core, linear speedup on multiple cores

dynamic programming [PPoPP '14, TOPC '15, ICASSP '16]

- linear speedup beyond the previous-best software Viterbi decoder
- 7x speedup over state-of-the-art speech decoder

large-scale data processing [SOSP '15]

- automatically parallelizable language for temporal analysis

relational databases

- optimize sessionization & windowed aggregates
- 10x improvement over SQL server

machine learning

- parallel stochastic gradient descent

part 2 of the talk

part 1 of the talk

Auto-Parallelization Across Dependences Large-scale data processing

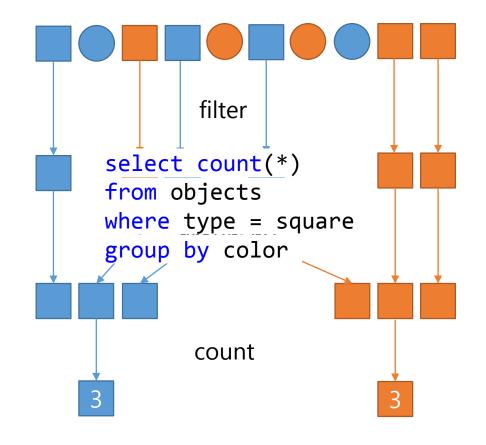
Relational abstractions for data processing

map, reduce, join, filter, group-by

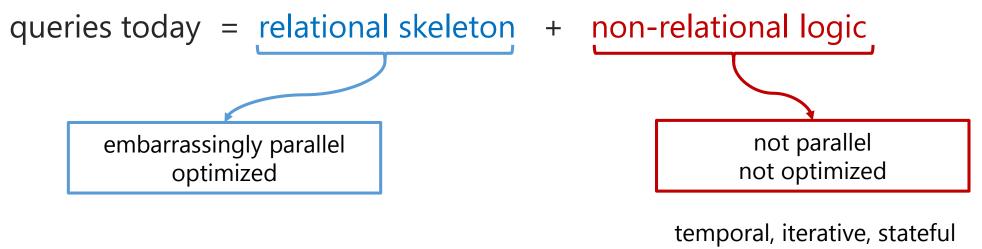
expressive, simple, and declarative

automatically parallelizable

decades of work on optimizations



Forces pushing beyond relational abstractions

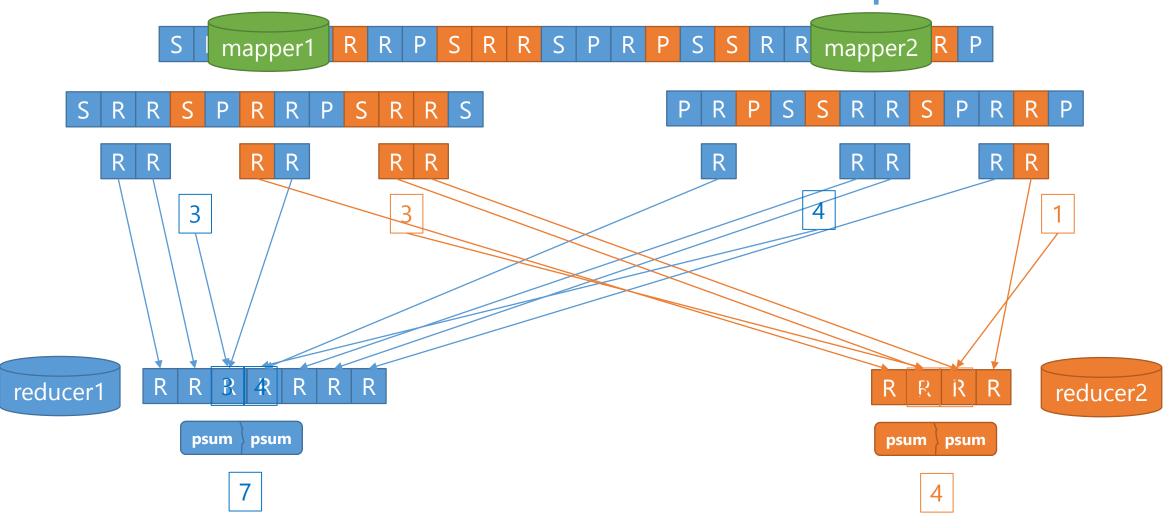


- log analysis
- sessionization
- machine learning

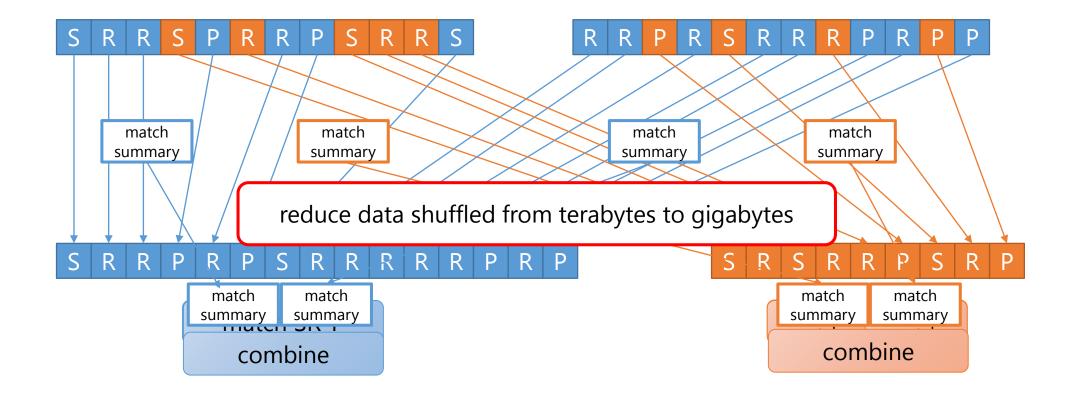
Map-Reduce example

users can:

Count the number of reviews read per user



Count influential reviews (SR+P) per user



SymPLE [SOSP '15]

a language for specifying nonrelational parts of data-processing queries a subset of C++

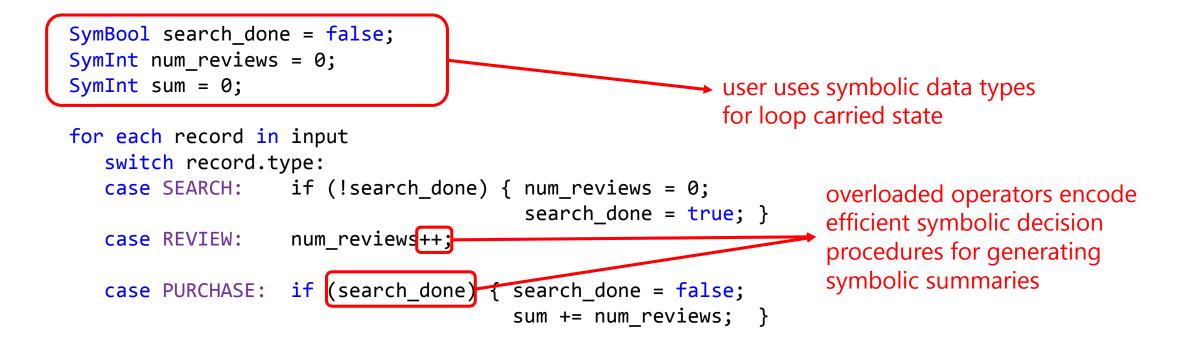
automatically parallelize sequential code

expose additional parallelism to query optimizer

up to 2 orders of magnitude efficiency improvement

Count influential reviews

Count influential reviews



Computing max in parallel

max is, of course, associative

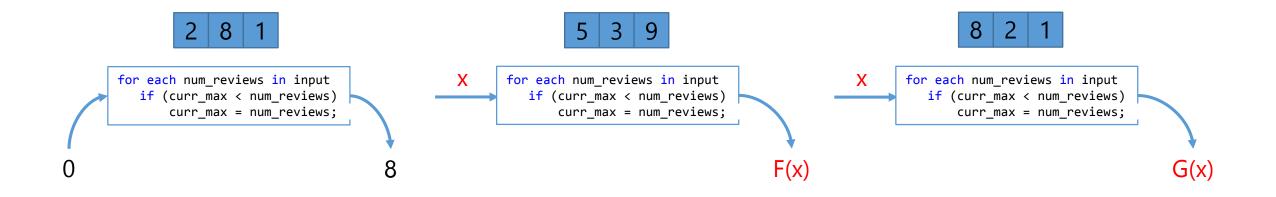
SymInt curr_max = 0;

for each num_reviews in input
if (curr_max < num_reviews)
 curr_max = num_reviews;</pre>

but this is not apparent from code

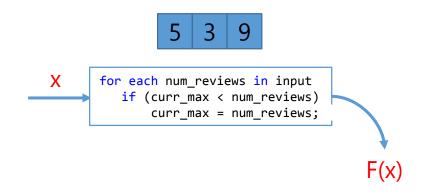
SymPLE can parallelize this code

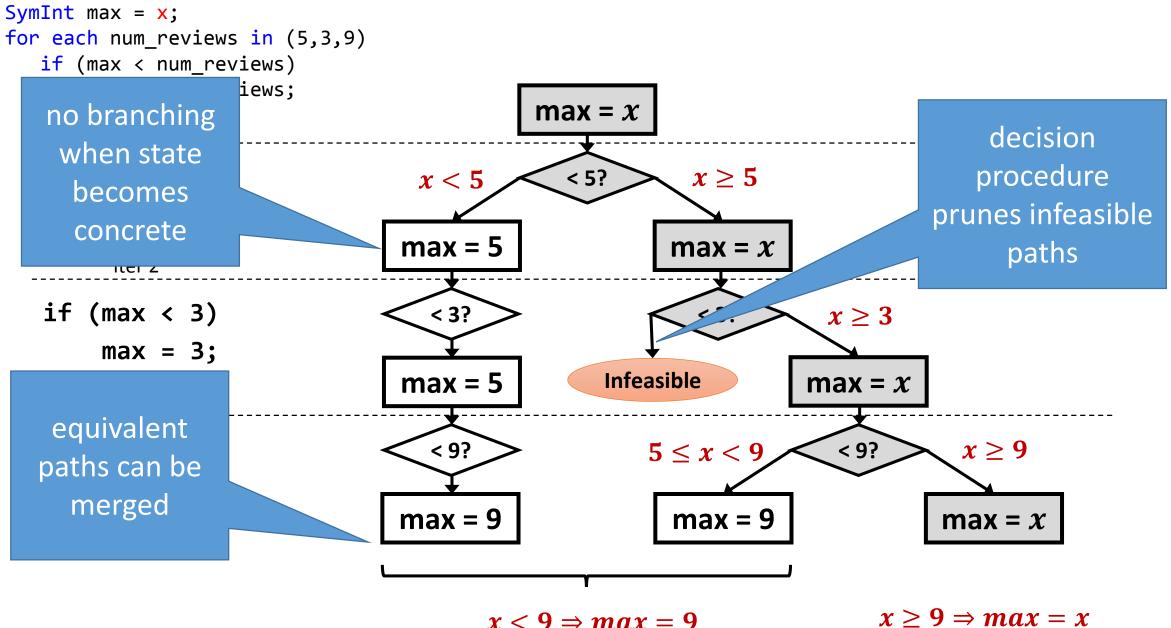
Parallelize by breaking dependences



output = G(F(8))

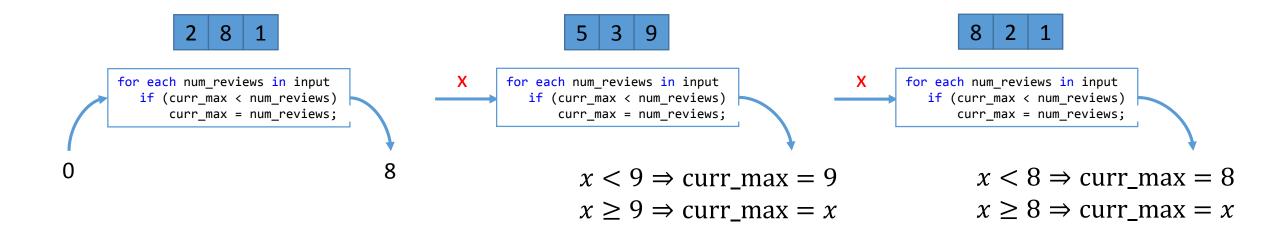
Parallelize by breaking dependences



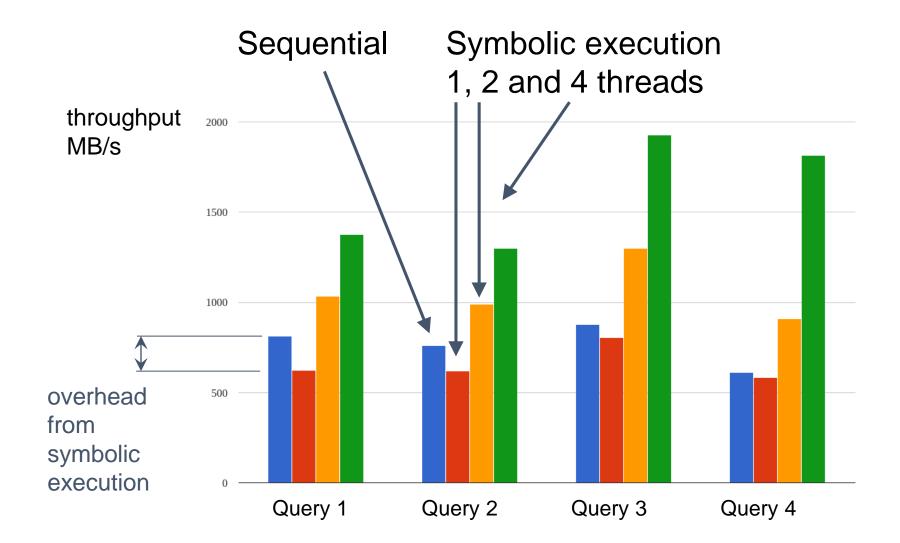


 $x < 9 \Rightarrow max = 9$

Parallelize by breaking dependences

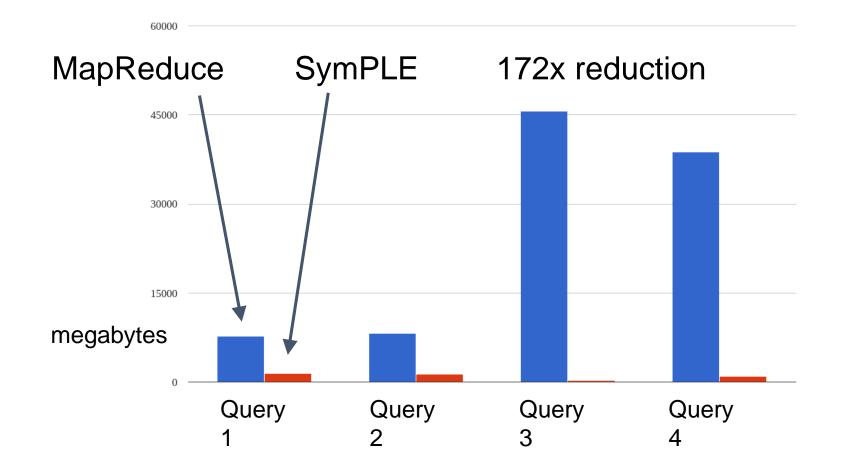


Single machine throughput



Reduction in data movement

data shuffled from mappers to reducers



Challenge

can we develop new abstractions for future data-processing needs?

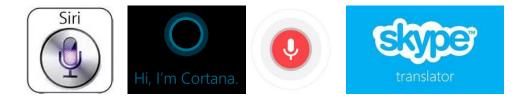
- move beyond embarrassingly parallel
- automatically parallelizable

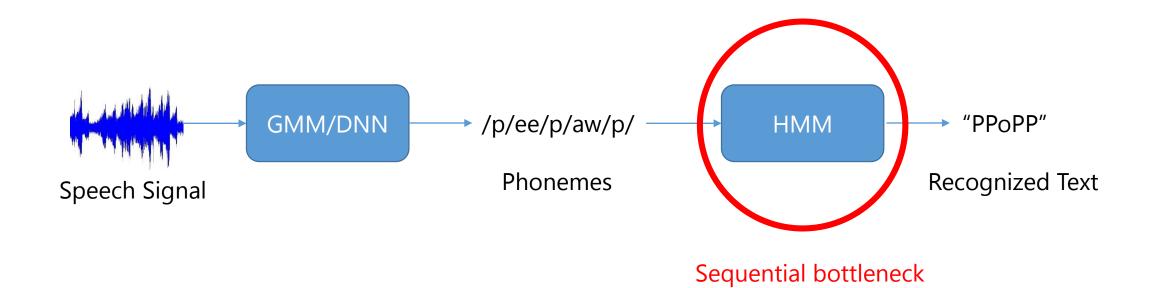
perform whole query optimizations

- unify relational and non-relational parts
- extract filters, project unused parts of data, ...

Manual Parallelization Across Dependences Dynamic Programming

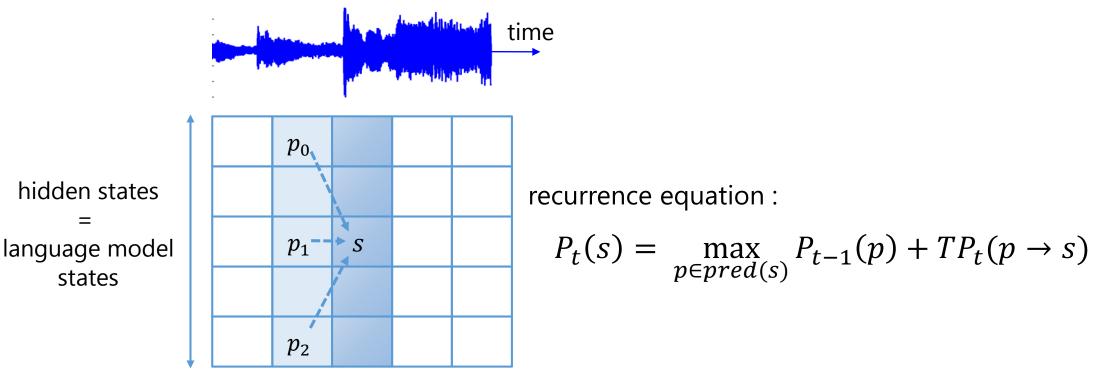
Speech decoders



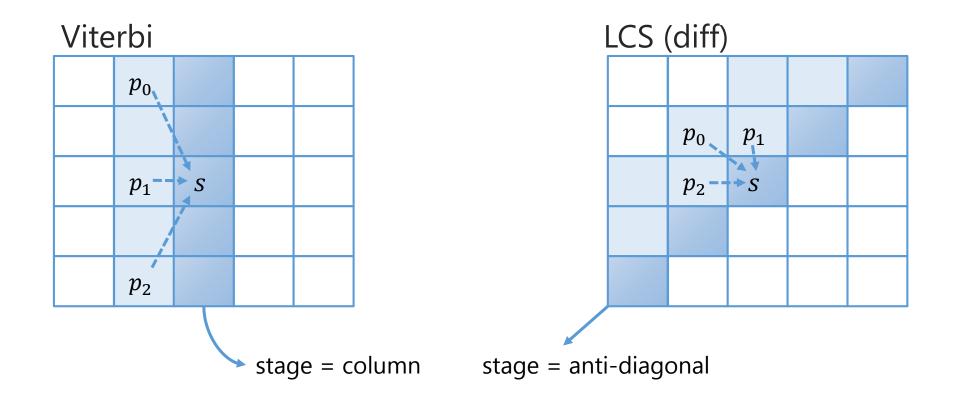


Viterbi algorithm for Hidden Markov Models (HMM)

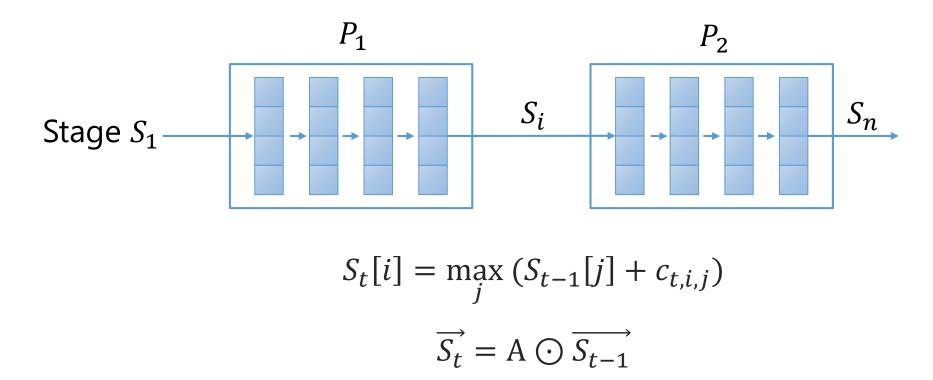
finds the most likely sequence of hidden states that explain an observation



Dynamic programming computes a sequence of stages

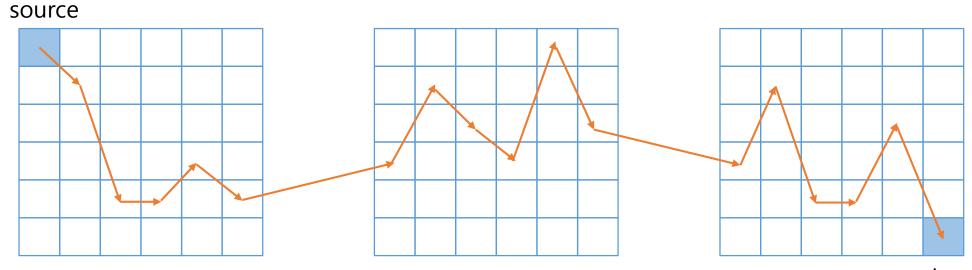


Our focus: parallelization across stages

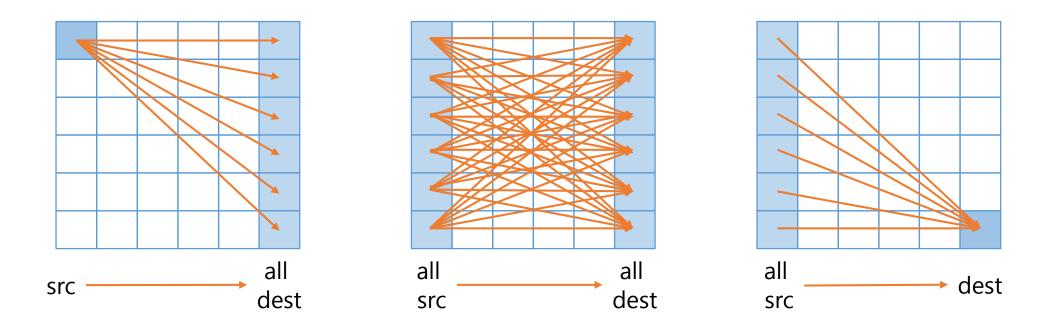


where \odot is matrix multiplication in tropical semiring

Solution in terms of finding shortest-paths



Solution in terms of finding shortest-paths

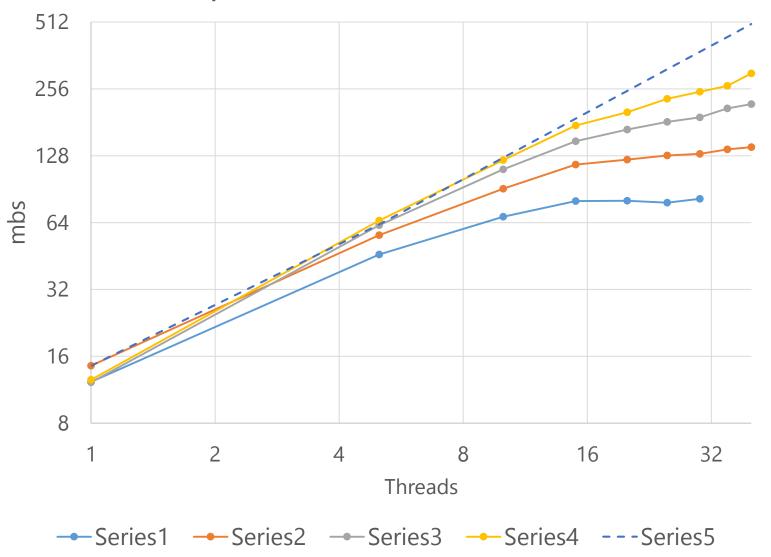


parallelization cost = size of stages

Shortest paths converge to optimal routes

Convergence in LCS

Speed of Viterbi Decoder on CDMA



"inherently sequential" ⇒ "embarrassingly parallel"

