Watchdoglite: Hardware-Accelerated
Compiler-Based Pointer Checking

Santosh Nagarakatte Milo M.K. Martin
Rutgers University Steve Zdancewic
University of Pennsylvania

This work licensed under the Creative Commons
Attribution-Share Alike 3.0 United States License

You are free:

— to Share — to copy, distribute, display, and perform the work
— to Remix — to make derivative works

* Under the following conditions:

— Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

— Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

* For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to:

* Any of the above conditions can be waived if you get permission from the
copyright holder.

 Apart from the remix rights granted under this license, nothing in this
license impairs or restricts the author's moral rights.

Project goal:
Make C/C++ safe and secure

Why?
Lack of memory safety is the root cause of
serious bugs and
security vulnerabilities

Security Vulnerabilities due to Lack of Memory

Safety
Adobe Acrobat — buffer overflow

CVE-2013-1376- Severity: 10.0 (High) January 30, 2014

Oracle MySQL — buffer overflow

CVE-2014-0001 - Severity: 7.5 (High) January 31, 2014

Firefox — use-after-free vulnerability
CVE-2014-1486 - Severity: 10.0 (High) February 6, 2014

(™ Google Chrome— use-after-free vulnerability
\/ CVE-2013-6649 - Severity: 7.5 (High) January 28, 2014

DHS/NIST National Vulnerability Database:
e Last three months: 92 buffer overflow and 23 use-after-free disclosures
* Last three years: 1135 buffer overflows and 425 use-after-free disclosures

Project Overview & Progression

Memory safety has two components:
Bounds safety Use-after-free safety

Software

Project Overview & Progression

Memory safety has two components:
Bounds safety ~ Use-after-free safety

* Pointer-based
* Disjoint metadata
* ~10% overhead

HardBound
[ASPLOS 2008]

SoftBound

[PLDI 2009]

* Pointer-based
* Disjoint metadata
* ~75% overhead

Software

Project Overview & Progression

Memory safety has two components:
Use-after-free safety

Bounds safety

HardBound

[ASPLOS 2008]
* Pointer-based
* Disjoint metadata
* ~10% overhead

Watchdog

[ISCA 2012]
* Pointer-based, disjoint
* Unique identifier check
* ~¥15% overhead

SoftBound

[PLDI 2009]
* Pointer-based
* Disjoint metadata
* ~75% overhead

[ISMM 2010]
* Pointer-based, disjoint
* Unique identifier check
* “50% overhead

WatchdoglLite

High A® Watchdog

Hardware
Modifications

l SoftBound
None Q

None High

Runtime Overhead
Ideal

Pointer-based Checking with disjoint metadata
— Compiler transformation+ four hardware instructions

— Bounds + Use-after-free safety
— 29% overhead

— Similar to Intel MPX for bounds safety (concurrent work)

Background on Pointer Checking

Pointer-Based Bounds Checking
[Ccured, SafeC, SoftBound, CETS, MSCC, Patil & Fischer, ...]

 Metadata is maintained with pointers

— Each pointer has a view of memory it can access
* Challenges

— What metadata do you maintain?

— How do you propagate this metadata?

Every pointer has metadata For Bounds Safety

(D, metadata)\

(A, metadata)

(D, (OxFO, OxF
(A, (OxFO, OXFF)

OxFO

OxFO

(B, metadata) OXFF (B, (OXFO, OXFF)) OxFF

ldentifier Checking for Use-After Free Safety

[SafeC, Patil&Fischer, MSCC, CETS, Watchdosg, ...]

 Allocate unique identifier (UID) for each allocation
— Record the set of valid identifiers
— Track this UID with each pointer
— Invalidate identifiers on memory deallocation

— Check for identifier validity on memory accesses
Step 1: Step 2: Step 3:
initial state free(A); C = malloc(...); B[0] =...;

(A, #1) (C, #2) -

(B, #1)

(B, #1) © |—= —

Valid IDs:
H#1

Valid IDs: Valid IDs:

) ¥, #2

Disjoint Metadata

memory disjoint metadata

base bound id
e ' Memory layout unchanged

®* Protects metadata

* Only pointers in
memory have disjoint
metadata

Mapped to some partin
virtual memory

* Allocated on demand

0xBO
OxB4

OxB8

memory disjoint metadata
base bound id
| | !
I I :
I I !
O0xB2 0xBO Ostl OxFO #42
1 —

Lock & Key Checking

[Patil&Fischer, MSCC, CETS, Watchdog, ...]

—

Split UID into “lock” and
llkey"

Allocation:
memory[lock] = key

Invariant:
memory[lock] == key

Lock & Key Checking

[Patil&Fischer, MSCC, CETS, Watchdog, ...]

OxFO H#42

memory disjoint metadata
base bound id . .
; . : Split UID into “lock” and
I [1 o '
l | | key
1 1
0 OXB2 0xBO | oxB5 ' oxFo | #42 Allocation:
1 —
i i | memory[lock] = key
| .
0480 N i i | Invariant:
OxB4 < ! ' i __
OBS < | i i memory[lock] == key
!] i . .
OxB3 < : . Pointer copies = copy
|
! ' - metadata
Ox OxB5 OxB5 | OxB9 ' OxFO #42
1
1
1
1
1
1
1
1
1

Lock & Key Checking

[Patil&Fischer, MSCC, CETS, Watchdog, ...]

Deallocation:

memory[lock] =0
Check is “load” + “compare”

memory disjoint metadata
base bound id . .
; . : Split UID into “lock” and
I [1 o '
I | | key
1 1
0 OXB2 0xBO | oxB5 ' oxFo | #42 Allocation:
1 —
i i | memory[lock] = key
| .
0480 N i i | Invariant:
OxB4 < ! ' i __
OBS < | i i memory[lock] == key
0XBS | ! : . .
< i i | Pointer copies = copy
|
! ' - metadata
Ox OxB5 OxB5 | OxB9 ' OxFO #42
1
1
1
1
1
1
1
1
1

—
@

Hardware vs Software Implementation

Task Watchdog SoftBoundCETS
[ISCA 2012] [PLDI 2009, ISMM 2010]

Pointer Conservative Accurate with
detection compiler

Hardware vs Software Implementation

Task Watchdog SoftBoundCETS
[ISCA 2012] [PLDI 2009, ISMM 2010]

Pointer Conservative Accurate with
detection compiler
Op Insertion Micro-op injection Compiler inserted

instructions

Hardware vs Software Implementation

Task Watchdog SoftBoundCETS
[ISCA 2012] [PLDI 2009, ISMM 2010]

Pointer Conservative Accurate with

detection compiler

Op Insertion Micro-op injection Compiler inserted
instructions

Metadata Copy elimination using Standard dataflow

Propagation register renaming analysis

Hardware vs Software Imple
Compller cando

these tasks
TaSk WatChdog efﬁciently
[ISCA 2012] [PLUI 2UUY, 151V

Pointer Conservative Accurate with
detection compiler

Compiler inserted
instructions

Standard dataflo

jection

Op In{ Hardware can
accelerate checks &

Meta(metadata accesses ation using
Propagation register renaming

Checks + fast checks (implicit) - Instruction overhead
- no check optimization |+ Check optimization

Metadata + Fast lookups - Instruction overhead
Loads/Stores

What is WatchdoglLite?

Hardware acceleration with new instructions for compiler
based pointer checking

Instructions added to the ISA
— Bounds check & use-after-free check instructions
— Metadata load/store instructions

Pack four words of metadata into a single wide register
— Single wide load/store = eliminates port pressure
— Avoid implicit registers for the new instructions
— Reduces spills/restores due to register pressure

Spatial (Bound) Check Instruction

int p;

< g base ||

Schk.size imm(rl), ymmO

g + sizeo = g_bound){

Supports all addressing modes
Size of the access encoded

5 instructions for the spatial
check

Operates only on registers
Executes as one micro-op
Latency is not critical

Temporal (Use-After-Free) Check
Instruction

Tchk ymmO

Performs a memory access

3 instructions for the Executes as two micro-ops
temporal check Latency is not critical

Metadata Load/Store Instructions

int *p, **q;
p_metadata=+eldlE_lookup(q); Metaload %ymmO0, imm(%rax)
p="*q;
Table_'rao-kgg(.q,)i —metadata Metastore imm(%rax), %ymmO
*q=p Performs a wide load/store
14 instructions for the Executes as two micro-ops
metadata load — address computation
16 instructions for the -- wide load/store uop

metadata store Shadow space for the metadata

See Paper For

Compiler transformation to use wide metadata
Metadata organization

Check elimination effectiveness

Effectiveness in detecting errors

Narrow mode instructions

Comparison of related work

Evaluation

Evaluation — Performance Overheads

250
M SoftBoundCETS

200

Average

150

100

50

N7

S @ & & Q¥ PG ®Q<°Q‘°b"b‘&‘?&ééé"}@

&L & PSS &
* Timing simulations of wide-issue out- of-order x86 core

* Average performance overhead: 29%
* Reduces average from 90% with SoftBoundCETS

Remaining Instruction Overhead

160
140
120 I - - metastore
100 — O I B metaload
80 - I = - g B & _ ltchk
Zg I I _il IIIIIIIschk
W Lea
28! -III!IIIII-I I Spill
5%%g§§%g‘§'§§§‘ggg%l0thers
> E w a E g < > g
Qo C g

* Average instruction overhead reduces to 81% (from 180% with
SoftBoundCETS)

 Spatial checks = better check optimizations can help
* Lea instructions = change code generator

Intel MPX (Concurrent Work)

* InlJuly 2013, Intel MPX announced ISA specification

— Similar hardware/software approach
* Pointer-based checking: base and bounds metadata
* Disjoint metadata in shadow space

* Adds new instructions for bounds checking

— Differences

* Adds new bounds registers vs reusing existing AVX registers

e Changes calling conventions to avoid shadow stack

* Backward compatibility features
— Interoperability with un-instrumented and instrumented code
— Validates metadata by redundantly encoding pointer in metadata
— Calling un-instrumented code clears bounds registers

* Does not perform use-after-free checking

Conclusion

e Safety against buffer overflows & use-after-free errors
— Pointer based checking
— Bounds and identifier metadata
— Disjoint metadata
 Watchdoglite
— Four new instructions for compiler-based pointer checking
— Four new instructions
— Packs the metadata in wide registers

High 4°®
Leveraging the compiler %
enables WatchdoglLite to use Hardware
simpler hardware for Modifications | (i} %
comprehensive memory None @ *—>

safety IdeaI/ None Runtime Overhead 8"

Thank You

Try SoftBoundCETS for LLVM-3.4

http://github.com/santoshn/softboundcets-34/

