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Use of undefined values 
•  Undefined values are caused by 

memory allocations without initialization 
–  Stack variables and malloc() heaps in C 

•  Definedness is transitive 

•  May cause serious problems when 
used by some critical operations 
–  Conditional jumps 
–  Pointer dereferences 

void foo() { 
 int a, b, c; 
 a = 1 + 2; 
 b = 0; 

      ... 
 b = c + 3; 

l1:  if (a > b) 
     ... 
 ... 
 int *p; 

l2:  *p = a; 
} 

undefined / defined 
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Dynamic analysis 
•  Instrumentation via shadow 

memory 

•  Binary-based instrumentation 
–  Insert code on the binary 
–  e.g. Valgrind (>10X slowdown) 

•  Source-based instrumentation 
–  Insert code at compile-time 
–  e.g. MSan (typical 3X slowdown) 

void foo() { 
 int a, b, c; 
 a = 1 + 2; 
 b = 0; 

      ... 
 b = c + 3; 

l1:  if (a > b) 
     ... 
 ... 
 int *p; 

l2:  *p = a; 
} 

 
as= F; bs= F; cs= F;  
as = T & T; 
bs= T; 
... 
bs= cs & T; 
check (as& bs); 
... 
... 
ps = F; 
check (ps); 
 

undefined / defined 
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Other analysis 

•  Static analysis 
–  Dataflow analysis 
–  Compilers (gcc, clang) 
–  HDL, typestate verification, IFDS 

•  Static + dynamic 
–  Nguyen et al. CC ’03 

•  For Fortran (5X slowdown) 
–  Necula et al. TOPLAS ’05 

•  CCured applies only to pointers (requiring source code modification)  
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Source

Clang Front-End

Memory SSA Construction

Building Value-Flow Graph 

Definedness Resolution

VFG-based Optimizations

Code Generation

bc files

Full Instrumentation

bc files

Binary

U
SH
ER

Pointer Analysis

instrumented bc filesinstrumented bc files

Guided Instrumentation

The Usher framework 

•  Instrumentation 
–  Full vs Guided (selective) 

Static 
analysis 
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Our contributions 

•  Usher is a new static + dynamic analysis to detect 
undefined value uses in C programs 
–  Inspired by our previous work (Sui et al. ISSTA ’12) 
–  Guide instrumentation by solving a graph reachability problem 

•  Our value-flow representation allows optimizations to be 
developed to further reduce the instrumentation 

•  Usher reduces the slowdowns of MSan from 212% – 
302% to 123% – 140% for 15 benchmarks  
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void foo() { 
 int a, b, c, d; 
 c = 1 + 2; 
 a = 3 + c; 
 b = d + 4; 

l1: if (a > b) ...; 
     ... 
 a = a + 5; 

l2: if (a > 10) ...; 
} 

A motivating example 

void foo() { 
 int a1, b1, c1, d1; 
 c2 = 1 + 2; 
 a2 = 3 + c2; 
 b2 = d1 + 4; 

l1: if (a2 > b2) ...; 
     ... 
 a3 = a2 + 5; 

l2: if (a3 > 10) ...; 
} 

as= F; bs= F; cs= F;  
ds= F; 
cs = T & T;  
as = T & cs;  
bs = ds & T; 
check(as & bs); 
 
as = as & T; 
check(as & T); 
 

chk1 

chk2 

a2 

c2 

3 

b2 

a3 

5 

10 

d1 4 

a1 b1 1 2 c1 

Must be defined 
May be undefined 
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Value-flow graph (VFG) 

•  Sparseness is based on Static Single Assignment 
(SSA) form 

•  For top-level variables 
–  e.g., x = y;,  a = b + c; 
–  SSA is straight forward (e.g. partial SSA in LLVM-IR)  

•  For address-taken variables 
–  e.g., x = *p;,   *q = y; 
–  Use pointer analysis results to build Memory SSA  
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VFG for address-taken variables 

void bar() { 
 int a1, b1, c1, v1; 

      int *p1, *x1, *y1; 
 ... 

     *p1 = 0;      [a2 = 0;]   //strong update 
 ... 

     *x4 = 1;      [a3=(1, a2);]  //weak update 
         [b2=(1, b1);] 
 ... 

     v2 = *y3;     [v2=(a3, c1);] 
} 

v2 

a3 

a2 

1 

c1 

0 

Points-to information: 
    p1 à {a} 
    x4 à {a, b} 
    y3 à {a, c} 

a1 b1 

b2 

v1 
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Guided instrumentation 
•  Definedness resolution on VFG 

–  Traverse from every undefined source node (stack, malloc()) 
•  Mark the reachable nodes as may-be-undefined 
•  Mark the unreachable nodes as defined 

–  Graph reachability in a context-sensitive manner 

•  Instrumentation 
–  Rule out the nodes that never reach any may-be-undefined 

check node (critical operation) 
–  For the remaining nodes 

•  For may-be-undefined nodes, insert instrumentation code 
•  For defined nodes, ... 
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Revisit the motivating example 

chk1 

chk2 

a2 

c2 

3 

b2 

a3 

5 

10 

d1 4 

a1 b1 1 2 c1 as= F; bs= F; cs= F;  
ds= F; 
cs = T & T;  
as = T & cs;  
bs = ds & T; 
check(as & bs); 
 
as = as & T; 
check(as & T); 
 

void foo() { 
 int a1, b1, c1, d1; 
 c2 = 1 + 2; 
 a2 = 3 + c2; 
 b2 = d1 + 4; 

l1: if (a2 > b2) ...; 
     ... 
 a3 = a2 + 5; 

l2: if (a3 > 10) ...; 
} 
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Revisit the motivating example 

chk1 

chk2 

a2 

c2 

3 

b2 

a3 

5 

10 

d1 4 

a1 b1 1 2 c1 

defined 
may-be-undefined 

as= F; bs= F; cs= F;  
ds= F; 
cs = T & T;  
as = T & cs;  
bs = ds & T; 
check(as & bs); 
 
as = as & T; 
check(as & T); 
 

void foo() { 
 int a1, b1, c1, d1; 
 c2 = 1 + 2; 
 a2 = 3 + c2; 
 b2 = d1 + 4; 

l1: if (a2 > b2) ...; 
     ... 
 a3 = a2 + 5; 

l2: if (a3 > 10) ...; 
} 
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False positives with address-taken variables 

void bar() { 
 int a1, b1, c1, v1; 

      int *p1, *x1, *y1; 
 ... 

l1:  *p1 = 0;    [a2 = 0;]  //SU 
 ... 

l2:  *x4 = 1;   [a3=(1, a2);] //WU 
       [b2=(1, b1);] 
 ... 

l3:  v2 = *y3;   [v2=(a3, c1);] 
l4:  if (v2) ...; 
} 

 
as= F; bs= F;  
cs= F; vs= F;  
... 
(*p)s = T;  
 
(*x)s = T;  
 
... 
vs = (*y)s; 
check (vs); 
 

Points-to information 
•  Statically 
         p1 à {a} 
         x4 à {a, b} 
         y3 à {a, c} 
•  At runtime 
         p1 à a 
         x4 à b 
         y3 à a 

Exe   as / bs / vs    as / bs / vs  as / bs / vs  
l1 F / F / F F / F / F T / F / F 

l2 F / F / F F / T / F T / F / F 

l3 F / F / F F / T / F T / F / T 

l4 F / F /  F / T /  T / F /  

v2 

a3 

a2 1 

c1 

0 

defined 
may-be-undefined 
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Optimizations on the VFG 

•  VFG simplification 
–  Reduce shadow propagation distance 

•  Redundant check elimination 
–  If a value xn is previously checked, then the following checks on it 

can be eliminated 
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Redundant check elimination 

 ... 
 c1 = a1 + b1; 

l1: if (c1) ... 
 ... 

l2: x1 = b1 + 3; 
 if (x1) ....           
 ... 

(1)   Value V must flow to a checking statement at L; 
(2)   Value V is used in statement at L’; 
(3)   L dominates L’ in CFG. 

If (1), (2) and (3) hold, cut the edge from V for L’ 

chk1 

a1 b1 3 

c1 

chk2 

x1 

chk1 

a1 b1 3 

c1 

chk2 

x1 
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Evaluation 
•  Benchmarks 

–  All 15 C programs of SPEC2K 

•  Compilation workflow 

Pre-process 

MSan 
instrumentation 

Pointer 
analysis Usher 

O1 / O2 

.bc .exe 

.exe 

MSan  
runtime library 

O1 / O2 

link 

Field-sensitive Andersen’s analysis  
(Hardekopf and Lin, PLDI ’07) 
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Results 
•  Static analysis 

–  Most benchmarks <1s and <320MB 
–  176.gcc (58s, 2.7GB) and 253.perlbmk (54s, 1.4GB) 

•  Runtime overhead (WRT native code) 
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Conclusion 

•  A new static + dynamic analysis for undefined value use 
detection in C programs 
–  Sparse VFG analysis 
–  VFG-based optimizations 
–  Selective instrumentation 

•  For even better results? 
–  Try more precise pointer analysis 
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