
 Never Stand Still Faculty of Engineering Computer Science and Engineering

Click to edit Present’s Name

 Never Stand Still Faculty of Engineering Computer Science and Engineering

Accelerating Dynamic Detection of Uses of
Undefined Values with Static Value-Flow Analysis

Ding Ye, Yulei Sui, Jingling Xue
Programming Languages and Compilers Group
School of Computer Science and Engineering

University of New South Wales, Australia

February 18, 2014

School of Computer Science and Engineering
2

Outline

•  What are undefined values?

•  Related work and our contributions

•  Methodology

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
3

Use of undefined values
•  Undefined values are caused by

memory allocations without initialization
–  Stack variables and malloc() heaps in C

•  Definedness is transitive

•  May cause serious problems when
used by some critical operations
–  Conditional jumps
–  Pointer dereferences

void foo() {
 int a, b, c;
 a = 1 + 2;
 b = 0;

 ...
 b = c + 3;

l1: if (a > b)
 ...
 ...
 int *p;

l2: *p = a;
}

undefined / defined

School of Computer Science and Engineering
4

Outline

•  What are undefined values?

•  Related work and our contributions

•  Methodology

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
5

Dynamic analysis
•  Instrumentation via shadow

memory

•  Binary-based instrumentation
–  Insert code on the binary
–  e.g. Valgrind (>10X slowdown)

•  Source-based instrumentation
–  Insert code at compile-time
–  e.g. MSan (typical 3X slowdown)

void foo() {
 int a, b, c;
 a = 1 + 2;
 b = 0;

 ...
 b = c + 3;

l1: if (a > b)
 ...
 ...
 int *p;

l2: *p = a;
}

as= F; bs= F; cs= F;
as = T & T;
bs= T;
...
bs= cs & T;
check (as& bs);
...
...
ps = F;
check (ps);

undefined / defined

School of Computer Science and Engineering
6

Other analysis

•  Static analysis
–  Dataflow analysis
–  Compilers (gcc, clang)
–  HDL, typestate verification, IFDS

•  Static + dynamic
–  Nguyen et al. CC ’03

•  For Fortran (5X slowdown)
–  Necula et al. TOPLAS ’05

•  CCured applies only to pointers (requiring source code modification)

School of Computer Science and Engineering
7

Source

Clang Front-End

Memory SSA Construction

Building Value-Flow Graph

Definedness Resolution

VFG-based Optimizations

Code Generation

bc files

Full Instrumentation

bc files

Binary

U
SH
ER

Pointer Analysis

instrumented bc filesinstrumented bc files

Guided Instrumentation

The Usher framework

•  Instrumentation
–  Full vs Guided (selective)

Static
analysis

School of Computer Science and Engineering
8

Our contributions

•  Usher is a new static + dynamic analysis to detect
undefined value uses in C programs
–  Inspired by our previous work (Sui et al. ISSTA ’12)
–  Guide instrumentation by solving a graph reachability problem

•  Our value-flow representation allows optimizations to be
developed to further reduce the instrumentation

•  Usher reduces the slowdowns of MSan from 212% –
302% to 123% – 140% for 15 benchmarks

School of Computer Science and Engineering
9

Outline

•  What are undefined values?

•  Related work and our contributions

•  Methodology

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
10

void foo() {
 int a, b, c, d;
 c = 1 + 2;
 a = 3 + c;
 b = d + 4;

l1: if (a > b) ...;
 ...
 a = a + 5;

l2: if (a > 10) ...;
}

A motivating example

void foo() {
 int a1, b1, c1, d1;
 c2 = 1 + 2;
 a2 = 3 + c2;
 b2 = d1 + 4;

l1: if (a2 > b2) ...;
 ...
 a3 = a2 + 5;

l2: if (a3 > 10) ...;
}

as= F; bs= F; cs= F;
ds= F;
cs = T & T;
as = T & cs;
bs = ds & T;
check(as & bs);

as = as & T;
check(as & T);

chk1

chk2

a2

c2

3

b2

a3

5

10

d1 4

a1 b1 1 2 c1

Must be defined
May be undefined

School of Computer Science and Engineering
11

Outline

•  What are undefined values?

•  Related work and our contributions

•  Methodology
–  How to perform the static value-flow analysis?
–  How to guide the instrumentation?
–  How to further optimize the performance?

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
12

Value-flow graph (VFG)

•  Sparseness is based on Static Single Assignment
(SSA) form

•  For top-level variables
–  e.g., x = y;, a = b + c;
–  SSA is straight forward (e.g. partial SSA in LLVM-IR)

•  For address-taken variables
–  e.g., x = *p;, *q = y;
–  Use pointer analysis results to build Memory SSA

School of Computer Science and Engineering
13

VFG for address-taken variables

void bar() {
 int a1, b1, c1, v1;

 int *p1, *x1, *y1;
 ...

 *p1 = 0; [a2 = 0;] //strong update
 ...

 *x4 = 1; [a3=(1, a2);] //weak update
 [b2=(1, b1);]
 ...

 v2 = *y3; [v2=(a3, c1);]
}

v2

a3

a2

1

c1

0

Points-to information:
 p1 à {a}
 x4 à {a, b}
 y3 à {a, c}

a1 b1

b2

v1

School of Computer Science and Engineering
14

Outline

•  What are undefined values?

•  Related work and our contributions

•  Methodology
–  How to perform the static value-flow analysis?
–  How to guide the instrumentation?
–  How to further optimize the performance?

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
15

Guided instrumentation
•  Definedness resolution on VFG

–  Traverse from every undefined source node (stack, malloc())
•  Mark the reachable nodes as may-be-undefined
•  Mark the unreachable nodes as defined

–  Graph reachability in a context-sensitive manner

•  Instrumentation
–  Rule out the nodes that never reach any may-be-undefined

check node (critical operation)
–  For the remaining nodes

•  For may-be-undefined nodes, insert instrumentation code
•  For defined nodes, ...

School of Computer Science and Engineering
16

Revisit the motivating example

chk1

chk2

a2

c2

3

b2

a3

5

10

d1 4

a1 b1 1 2 c1 as= F; bs= F; cs= F;
ds= F;
cs = T & T;
as = T & cs;
bs = ds & T;
check(as & bs);

as = as & T;
check(as & T);

void foo() {
 int a1, b1, c1, d1;
 c2 = 1 + 2;
 a2 = 3 + c2;
 b2 = d1 + 4;

l1: if (a2 > b2) ...;
 ...
 a3 = a2 + 5;

l2: if (a3 > 10) ...;
}

School of Computer Science and Engineering
17

Revisit the motivating example

chk1

chk2

a2

c2

3

b2

a3

5

10

d1 4

a1 b1 1 2 c1

defined
may-be-undefined

as= F; bs= F; cs= F;
ds= F;
cs = T & T;
as = T & cs;
bs = ds & T;
check(as & bs);

as = as & T;
check(as & T);

void foo() {
 int a1, b1, c1, d1;
 c2 = 1 + 2;
 a2 = 3 + c2;
 b2 = d1 + 4;

l1: if (a2 > b2) ...;
 ...
 a3 = a2 + 5;

l2: if (a3 > 10) ...;
}

School of Computer Science and Engineering
18

False positives with address-taken variables

void bar() {
 int a1, b1, c1, v1;

 int *p1, *x1, *y1;
 ...

l1: *p1 = 0; [a2 = 0;] //SU
 ...

l2: *x4 = 1; [a3=(1, a2);] //WU
 [b2=(1, b1);]
 ...

l3: v2 = *y3; [v2=(a3, c1);]
l4: if (v2) ...;
}

as= F; bs= F;
cs= F; vs= F;
...
(*p)s = T;

(*x)s = T;

...
vs = (*y)s;
check (vs);

Points-to information
•  Statically
 p1 à {a}
 x4 à {a, b}
 y3 à {a, c}
•  At runtime
 p1 à a
 x4 à b
 y3 à a

Exe as / bs / vs as / bs / vs as / bs / vs
l1 F / F / F F / F / F T / F / F

l2 F / F / F F / T / F T / F / F

l3 F / F / F F / T / F T / F / T

l4 F / F / F / T / T / F /

v2

a3

a2 1

c1

0

defined
may-be-undefined

School of Computer Science and Engineering
19

Outline

•  What are undefined values?

•  Related work and our contributions

•  Methodology
–  How to perform the static value-flow analysis?
–  How to guide the instrumentation?
–  How to further optimize the performance?

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
20

Optimizations on the VFG

•  VFG simplification
–  Reduce shadow propagation distance

•  Redundant check elimination
–  If a value xn is previously checked, then the following checks on it

can be eliminated

School of Computer Science and Engineering
21

Redundant check elimination

 ...
 c1 = a1 + b1;

l1: if (c1) ...
 ...

l2: x1 = b1 + 3;
 if (x1)
 ...

(1)  Value V must flow to a checking statement at L;
(2)  Value V is used in statement at L’;
(3)  L dominates L’ in CFG.

If (1), (2) and (3) hold, cut the edge from V for L’

chk1

a1 b1 3

c1

chk2

x1

chk1

a1 b1 3

c1

chk2

x1

School of Computer Science and Engineering
22

Outline

•  Introduction of CORG@UNSW

•  What are undefined values?

•  Our solution

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
23

Evaluation
•  Benchmarks

–  All 15 C programs of SPEC2K

•  Compilation workflow

Pre-process

MSan
instrumentation

Pointer
analysis Usher

O1 / O2

.bc .exe

.exe

MSan
runtime library

O1 / O2

link

Field-sensitive Andersen’s analysis
(Hardekopf and Lin, PLDI ’07)

School of Computer Science and Engineering
24

Results
•  Static analysis

–  Most benchmarks <1s and <320MB
–  176.gcc (58s, 2.7GB) and 253.perlbmk (54s, 1.4GB)

•  Runtime overhead (WRT native code)

School of Computer Science and Engineering
25

Outline

•  Introduction of CORG@UNSW

•  What are undefined values?

•  Our solution

•  Evaluation

•  Conclusion

School of Computer Science and Engineering
26

Conclusion

•  A new static + dynamic analysis for undefined value use
detection in C programs
–  Sparse VFG analysis
–  VFG-based optimizations
–  Selective instrumentation

•  For even better results?
–  Try more precise pointer analysis

School of Computer Science and Engineering
27

