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Use of undefined values

. defined / defined
» Undefined values are caused by ":o‘:d':zoo : =
memory allocations without initialization inta, b, c;
— Stack variables and malloc() heaps in C a=1+2;
: : ” b =0;
» Definedness is transitive
] b=c+3;
* May cause serious problems when 1: if (a > b)
used by some critical operations
— Conditional jumps "
Pointer dereferences nt’p;
— ol 12: *p = a;
}
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Dynamic analysis

_ _ undefined / defined
e Instrumentation via shadow void foo() {
memory inta,b,c; |as=F;b.=F;c=F;
a=1+2; |a,=T&T;
b =0; b=T,

» Binary-based instrumentation
— Insert code on the binary b=c+3; |b=c &T;
— e.g. Valgrind (>10X slowdown) I1: if (a>b) | check (a,&b,);

* Source-based instrumentation int *p: 0. =F;
— Insert code at compile-time 12: *p = a; check (p.);
— e.g. MSan (typical 3X slowdown) |}
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Other analysis

« Static analysis

— Dataflow analysis

— Compilers (gcc, clang)
— HDL, typestate verification, IFDS

« Static + dynamic
— Nguyen et al. CC 03
» For Fortran (5X slowdown)

— Necula et al. TOPLAS 05
« CCured applies only to pointers (requiring source code modification)
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Source

I Pointer Analysis ‘

(Memory SSA Construction)

The Usher framework

 |Instrumentation
— Full vs Guided (selective)

(Building Value-Flow Graph )

analysis

H3HSN

( Definedness Resolution )

Static :

(VFG-based Optimizations)

Full Instrumentation

( Guided Instrumentation )

~ ~ <instrumented bc files instrumented be files

T~ *| Code Generation ‘

Binary
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Our contributions

« Usher is a new static + dynamic analysis to detect
undefined value uses in C programs
— Inspired by our previous work (Sui et al. ISSTA '12)
— Guide instrumentation by solving a graph reachability problem

* Qur value-flow representation allows optimizations to be
developed to further reduce the instrumentation

e Usher reduces the slowdowns of MSan from 212% —
302% to 123% — 140% for 15 benchmarks
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A motivating example

@ void foo() {

inta,, b,,c,,d,; | d.=F;

IO c,=1+2; C, =
@ a, =3+ c,; =T &c,;
b,=d, + 4; b.=d &T;

s 1:if (a,>b,) ..; |check(a, & b,);

a; =a, +5; f\s=as&T; ]

Must be defined . .
May be undefined 12: if (a; > 10) ...; |[lcheck(a, & T)
}
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Value-flow graph (VFG)

« Sparseness is based on Static Single Assignment
(SSA) form

* For top-level variables
— eg.,Xx=y;,, a=b+c;
— SSA s straight forward (e.g. partial SSA in LLVM-IR)

 For address-taken variables

— e.g,X=p;, *q=Yy,;
— Use pointer analysis results to build Memory SSA
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VFG for address-taken variables

Points-to information:
void bar() { p, > {a}
int a,, by, c,, vy; X, = {a, b}
int *p,, *X,, *Yy4; y; 2 {a, c}

*p,=0; [a,=0;] /Istrong update

*x4=1; [a;=(1, a,);] //weak update
[b=(1, b,);]

vV, =%y, [vo=(as, €q)i]
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Guided instrumentation

 Definedness resolution on VFG

— Traverse from every undefined source node (stack, malloc())
« Mark the reachable nodes as may-be-undefined
« Mark the unreachable nodes as defined

— Graph reachability in a context-sensitive manner

* |nstrumentation

— Rule out the nodes that never reach any may-be-undefined
check node (critical operation)

— For the remaining nodes
* For may-be-undefined nodes, insert instrumentation code

* For defined nodes,
Be careful
= UNSW School of Computer Science and Engineering




Revisit the motivating example

void foo() {
inta,, b,, c,, d,;
c,=1+2;
a,=3+c,;
b,=d, +4;

11:if (a, > b,) ...;

a; =a, +9;
12: if (a; > 10) ...;
}

a.=F;
d.=F;
c.=T&T,;
a.=T&c,;
b.=d, &T;
check(a, & b,);

b.=F; c.=F,

a.,=a &T,
check(a, & T);
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Revisit the motivating example

(DGO
oI
G

defined
may-be-undefined

void foo() {
inta,, b,, c,, d,;
c,=1+2;
a,=3+c,;
b,=d, +4;

11:if (a, > b,) ...;

az;=a,+5;
12: if (a; > 10) ...;
}

a_,=a &T;
check(a, & T);
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False positives with address-taken variables

Points-to information
- Statically

void bar() {

:1Z§:}b} inta,, by, c,, v;;
4 ’ H * * *
int *p,, *x,, ;
ya > {a, c} P X1, Y4
At runtime
p, > a 1: *p,=0; [a,=0;] //SU
defined x,>b
may-be-undefined y;>a 12: *x,=1; [a,=(1, a,);] /WU
Exe a,/b_ /v, a/lb,/v, a /b, /v, [b,=(1, by)]
g FIFIF FIFIF TIFIF
. =y s - . = (*y) -
12 FIFIF FITIF TIFIF 13: V2= Vs [vo=(as; )] Vs = (Y)s;
14: if (v,) ...; check (v.);
13 FIFIF FITIF TIFIT )
14 FIFIF FITIF TIFIT
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Optimizations on the VFG

« VFG simplification

— Reduce shadow propagation distance

« Redundant check elimination

— If a value x,, is previously checked, then the following checks on it
can be eliminated
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Redundant check elimination

ONONO
| G »
I1: if (c,) ... @

X, =b, +3; (1) Value V must flow to a checking statement at L;
if (X4) .... (2) Value V is used in statement at | ;
(3) L dominates ' in CFG.

If (1), (2) and (3) hold, cut the edge from V for
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Evaluation

 Benchmarks
— All 15 C programs of SPEC2K

« Compilation workflow @
runtime library

_ MSan link
b instrumentation
.DC .exe
| p ! g !
Pre-process =21 01/02 I N 01/02 |
“ | ' ‘ l '
. —_—2 .exXe
Pomtey =21 Usher
analysis

Field-sensitive Andersen’s analysis
(Hardekopf and Lin, PLDI '07)
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Results

 Static analysis
— Most benchmarks <1s and <320MB
— 176.gcc (98s, 2.7GB) and 253.perlbmk (54s, 1.4GB)
* Runtime overhead (WRT native code)
» [- msan [ | usker [] USHERO”“]
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Conclusion

« Anew static + dynamic analysis for undefined value use
detection in C programs
— Sparse VFG analysis
— VFG-based optimizations
— Selective instrumentation

* For even better results?
— Try more precise pointer analysis
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