Accelerating Dynamic Detection of Uses of
Undefined Values with Static Value-Flow Analysis

Ding Ye, Yulei Sui, Jingling Xue

Programming Languages and Compilers Group
School of Computer Science and Engineering
University of New South Wales, Australia

Never Stand Still Faculty of Engineering Computer Science and Engineering

February 18, 2014

Outline

* What are undefined values?

* Related work and our contributions
 Methodology

« Evaluation

« Conclusion

School of Computer Science and Engineering

COmpiler Research Group@UNSW

Use of undefined values

. defined / defined
» Undefined values are caused by ":o‘:d':zoo : =
memory allocations without initialization inta, b, c;
— Stack variables and malloc() heaps in C a=1+2;
: : ” b =0;
» Definedness is transitive
] b=c+3;
* May cause serious problems when 1: if (a > b)
used by some critical operations
— Conditional jumps "
Pointer dereferences nt’p;
— ol 12: *p = a;
}

School of Computer Science and Engineering

. > N W 3 c 0 R G
752N l , : .’

- THE UNIVERSITY OF NEW SOUTH WALES

Mppge TS COmpiler Research Group@UNSW

Outline

* What are undefined values?

* Related work and our contributions
 Methodology

« Evaluation

« Conclusion

School of Computer Science and Engineering

Dynamic analysis

_ _ undefined / defined
e Instrumentation via shadow void foo() {
memory inta,b,c; |as=F;b.=F;c=F;
a=1+2; |a,=T&T;
b =0; b=T,

» Binary-based instrumentation
— Insert code on the binary b=c+3; |b=c &T;
— e.g. Valgrind (>10X slowdown) I1: if (a>b) | check (a,&b,);

* Source-based instrumentation int *p: 0. =F;
— Insert code at compile-time 12: *p = a; check (p.);
— e.g. MSan (typical 3X slowdown) |}

UN SW . School of Computer Science and Engineering
“L ‘ ‘N“v THE UNIVERSITY OF NEW SOUTH WALES Iec

Other analysis

« Static analysis

— Dataflow analysis

— Compilers (gcc, clang)
— HDL, typestate verification, IFDS

« Static + dynamic
— Nguyen et al. CC 03
» For Fortran (5X slowdown)

— Necula et al. TOPLAS 05
« CCured applies only to pointers (requiring source code modification)

School of Computer Science and Engineering

. c O R G
S~ THE UNIVERSITY OF NEW SOUTH WALES
Moy r | COmpiler Research Group@UNSW

Source

I Pointer Analysis ‘

(Memory SSA Construction)

The Usher framework

 |Instrumentation
— Full vs Guided (selective)

(Building Value-Flow Graph)

analysis

H3HSN

(Definedness Resolution)

Static :

(VFG-based Optimizations)

Full Instrumentation

(Guided Instrumentation)

~ ~ <instrumented bc files instrumented be files

T~ *| Code Generation ‘

Binary

School of Computer Science and Engineering

Our contributions

« Usher is a new static + dynamic analysis to detect
undefined value uses in C programs
— Inspired by our previous work (Sui et al. ISSTA '12)
— Guide instrumentation by solving a graph reachability problem

* Qur value-flow representation allows optimizations to be
developed to further reduce the instrumentation

e Usher reduces the slowdowns of MSan from 212% —
302% to 123% — 140% for 15 benchmarks

School of Computer Science and Engineering

‘s N W 8 c O R G
Al l J : ;

~JL~" THE UNIVERSITY OF NEW SOUTH WALES

M =t | COmpiler Research Group@UNSW

Outline

* What are undefined values?

* Related work and our contributions
* Methodology

« Evaluation

« Conclusion

UN SW - School of Computer Science and Engineering
'7 THE UNIVE F NEW SOUTH WALES Ie’:im@u"sw

A motivating example

@ void foo() {

inta,, b,,c,,d,; | d.=F;

IO c,=1+2; C, =
@ a, =3+ c,; =T &c,;
b,=d, + 4; b.=d &T;

s 1:if (a,>b,) ..; |check(a, & b,);

a; =a, +5; f\s=as&T;]

Must be defined . .
May be undefined 12: if (a; > 10) ...; |[lcheck(a, & T)
}

School of Computer Science and Engineering

COmpiler Research Group@UNSW

10

Outline

What are undefined values?

Related work and our contributions

Methodology

— How to perform the static value-flow analysis?
— How to guide the instrumentation?
— How to further optimize the performance?

Evaluation

« Conclusion

: - School of Computer Science and Engineering
"y\ LNJMRNYOF&W | Re.seirl:@UNSW

Value-flow graph (VFG)

« Sparseness is based on Static Single Assignment
(SSA) form

* For top-level variables
— eg.,Xx=y;,, a=b+c;
— SSA s straight forward (e.g. partial SSA in LLVM-IR)

 For address-taken variables

— e.g,X=p;, *q=Yy,;
— Use pointer analysis results to build Memory SSA

School of Computer Science and Engineering

IS N W 12 CORG
TSy
ML~ THE UNIVERSITY OF NEW SOUTH WALES

i S| COmpiler Research Group@UNSW

VFG for address-taken variables

Points-to information:
void bar() { p, > {a}
int a,, by, c,, vy; X, = {a, b}
int *p,, *X,, *Yy4; y; 2 {a, c}

*p,=0; [a,=0;] /Istrong update

*x4=1; [a;=(1, a,);] //weak update
[b=(1, b,);]

vV, =%y, [vo=(as, €q)i]

School of Computer Science and Engineering

COmpiler Research Group@UNSW

13

Outline

What are undefined values?

Related work and our contributions

Methodology

— How to perform the static value-flow analysis?
— How to guide the instrumentation?
— How to further optimize the performance?

Evaluation

« Conclusion

” School of Computer Science and Engineering
"v\ LNJ“WNY(’Fé‘)W | R.sein:@UNSW

Guided instrumentation

 Definedness resolution on VFG

— Traverse from every undefined source node (stack, malloc())
« Mark the reachable nodes as may-be-undefined
« Mark the unreachable nodes as defined

— Graph reachability in a context-sensitive manner

* |nstrumentation

— Rule out the nodes that never reach any may-be-undefined
check node (critical operation)

— For the remaining nodes
* For may-be-undefined nodes, insert instrumentation code

* For defined nodes,
Be careful
= UNSW School of Computer Science and Engineering

Revisit the motivating example

void foo() {
inta,, b,, c,, d,;
c,=1+2;
a,=3+c,;
b,=d, +4;

11:if (a, > b,) ...;

a; =a, +9;
12: if (a; > 10) ...;
}

a.=F;
d.=F;
c.=T&T,;
a.=T&c,;
b.=d, &T;
check(a, & b,);

b.=F; c.=F,

a.,=a &T,
check(a, & T);

16

School of Computer Science and Engineering

COmpiler Research Group@UNSW

Revisit the motivating example

(DGO
oI
G

defined
may-be-undefined

void foo() {
inta,, b,, c,, d,;
c,=1+2;
a,=3+c,;
b,=d, +4;

11:if (a, > b,) ...;

az;=a,+5;
12: if (a; > 10) ...;
}

a_,=a &T;
check(a, & T);

17

School of Computer Science and Engineering

COmpiler Research Group@UNSW

False positives with address-taken variables

Points-to information
- Statically

void bar() {

:1Z§:}b} inta,, by, c,, v;;
4 ’ H * * *
int *p,, *x,, ;
ya > {a, c} P X1, Y4
At runtime
p, > a 1: *p,=0; [a,=0;] //SU
defined x,>b
may-be-undefined y;>a 12: *x,=1; [a,=(1, a,);] /WU
Exe a,/b_ /v, a/lb,/v, a /b, /v, [b,=(1, by)]
g FIFIF FIFIF TIFIF
. =y s - . = (*y) -
12 FIFIF FITIF TIFIF 13: V2= Vs [vo=(as;)] Vs = (Y)s;
14: if (v,) ...; check (v.);
13 FIFIF FITIF TIFIT)
14 FIFIF FITIF TIFIT
. School of Computer Science and Engineering

THE UNIVERSITY OF NEW SOUTH WALES

Outline

What are undefined values?

Related work and our contributions

Methodology

— How to perform the static value-flow analysis?
— How to guide the instrumentation?
— How to further optimize the performance?

Evaluation

« Conclusion

: . School of Computer Science and Engineering
"y\ LNJMRNYOF&W | R.seirl:@UNSW

Optimizations on the VFG

« VFG simplification

— Reduce shadow propagation distance

« Redundant check elimination

— If a value x,, is previously checked, then the following checks on it
can be eliminated

School of Computer Science and Engineering

o7
S~ THE UNIVERSITY OF NEW SOUTH WALES
Mgt | COmpiler Research Group@UNSW

Redundant check elimination

ONONO
| G »
I1: if (c,) ... @

X, =b, +3; (1) Value V must flow to a checking statement at L;
if (X4) (2) Value V is used in statement at | ;
(3) L dominates ' in CFG.

If (1), (2) and (3) hold, cut the edge from V for

UN SW o School of Computer Science and Engineering
“L ‘Tv THE UNIVERSITY OF NEW SOUTH WALES Iec

Outline

 Introduction of CORG@UNSW
* What are undefined values?

* Our solution

» Evaluation

« Conclusion

School of Computer Science and Engineering

2= UNSW 22
(- . R
=g~ THE UNVE F NEW SOUTH WALES c
Mayg = | COmpiler Research Group@UNSW.

Evaluation

 Benchmarks
— All 15 C programs of SPEC2K

« Compilation workflow @
runtime library

_ MSan link
b instrumentation
.DC .exe
| p ! g !
Pre-process =21 01/02 I N 01/02 |
“ | ' ‘ l '
. —_—2 .exXe
Pomtey =21 Usher
analysis

Field-sensitive Andersen’s analysis
(Hardekopf and Lin, PLDI '07)

School of Computer Science and Engineering

" N W 23 C OR
- = THE UNIVERSITY OF NEW SOUTH WALES
Ave <t | COmpiler Research Group@UNS!

Results

 Static analysis
— Most benchmarks <1s and <320MB
— 176.gcc (98s, 2.7GB) and 253.perlbmk (54s, 1.4GB)
* Runtime overhead (WRT native code)
» [- msan [| usker [] USHERO”“]

A ©
AGAIEP ATENPT (76,00 17 mes? 4798 \ga et oquak® og oret, g a7 059 0 per O™ 558090 e V°“e 256079 5q0 0" pyered

School of Computer Science and Engineering

‘s N W 24 c O R G
Al l J : ;

~JL~" THE UNIVERSITY OF NEW SOUTH WALES

M =t | COmpiler Research Group@UNSW

Outline

 Introduction of CORG@UNSW
* What are undefined values?

* Our solution

« Evaluation

« Conclusion

School of Computer Science and Engineering

2= UNSW 2
(- . R
=g~ THE UNVE F NEW SOUTH WALES c
Mayg = | COmpiler Research Group@UNSW.

Conclusion

« Anew static + dynamic analysis for undefined value use
detection in C programs
— Sparse VFG analysis
— VFG-based optimizations
— Selective instrumentation

* For even better results?
— Try more precise pointer analysis

School of Computer Science and Engineering

26
© R
S~ THE UNIVERSITY OF NEW SOUTH WALES

Moy r | COmpiler Research Group@UNSW

School of Computer Science and Engineering

2= UNSW .

= THE UNIVERSITY OF NEW SOUTH WALES

