
Security Signature Inference for
JavaScript-based Browser Addons

Vineeth Kashyap, Ben Hardekopf

University of California Santa Barbara

!
CGO 2014

�1

JavaScript-based Browser Addons

�2

Addons: JavaScript with High Privileges

�3

Urging Security Concern

• Proof of concept exploits

• FFSniff, a configurable password stealer

• Unintentional vulnerabilities

• Wikipedia Toolbar allowed arbitrary privileged code execution

• Intentionally malicious

• Key loggers

�4

Curated Repositories

�5

�6

�7

�8

�9

�10

Manual JavaScript Addon Vetting is Difficult

• Ad-hoc

• Tedious

• Error-prone

�11

Our Goal: Help Automate the Vetting Process

• Automatically infer security signatures

• Summarize interesting information flows and critical API usages

�12

Our Goal: Help Automate the Vetting Process

• Automatically infer security signatures

• Summarize interesting information flows and critical API usages

�12

Our Goal: Help Automate the Vetting Process

• Automatically infer security signatures

• Summarize interesting information flows and critical API usages

�12

Our Goal: Help Automate the Vetting Process

• Automatically infer security signatures

• Summarize interesting information flows and critical API usages

�12

url send (www.evil.com)
amplified local control flow

Key Challenges

• Flexible security policies

• No single policy applies for all addons

• Classifying Information Flows

• Binary result (secure or insecure) is not enough

• Inferring Network Domains

• Critical to reason about addon’s network communication

�13

Our Solution

• Construct annotated Program Dependence Graphs (PDG)

• Use annotated PDGs to generate security signatures

• Use prefix string analysis to infer network domains communicated with

�14

Our Solution

• Construct annotated Program Dependence Graphs (PDG)

• Use annotated PDGs to generate security signatures

• Use prefix string analysis to infer network domains communicated with

�14

Our Solution

• Construct annotated Program Dependence Graphs (PDG)

• Use annotated PDGs to generate security signatures

• Use prefix string analysis to infer network domains communicated with

�14

Our Solution

• Construct annotated Program Dependence Graphs (PDG)

• Use annotated PDGs to generate security signatures

• Use prefix string analysis to infer network domains communicated with

�14

Automatically summarize API usages, interesting
information flows (classified based on the type of flow)

Annotated Program Dependence Graph

• Use JSAI† to construct a PDG

• Annotate the edges of PDG with the type of dependency

�15

† JSAI is a sound and efficient JavaScript abstract interpreter we developed.

�16

1 var data = {loc: url, other: 1}
2 send(data[“loc”]);
3 send(data[getString()]);

Strong vs. Weak Data Dependency

�16

1 var data = {loc: url, other: 1}
2 send(data[“loc”]);
3 send(data[getString()]);

Strong vs. Weak Data Dependency

�16

1 var data = {loc: url, other: 1}
2 send(data[“loc”]);
3 send(data[getString()]);

Strong vs. Weak Data Dependency

�17

5 if (url == "secret.com")
6 send(null);

Local Control Dependency

�17

5 if (url == "secret.com")
6 send(null);

Local Control Dependency

�18

13 try {
14 if (url != "hush-hush.com")
15 throw "irrelevant";
16 send(null);
17 } catch(x) {};

Syntax-obvious Non-local Control Dependency

14

�18

13 try {
14 if (url != "hush-hush.com")
15 throw "irrelevant";
16 send(null);
17 } catch(x) {};

Syntax-obvious Non-local Control Dependency

14

�19

18 try {
19 if (url != "mystic.com")
20 obj.prop = 1;
21 send(null);
22 } catch(x) {}

Non-obvious Non-local Control Dependency

�19

18 try {
19 if (url != "mystic.com")
20 obj.prop = 1;
21 send(null);
22 } catch(x) {}

Non-obvious Non-local Control Dependency

�20

 7 var arr = ["covert.com", "priv.com"/*,..*/];
 8 var i=0, count=0;
 9 while (arr[i] && url != arr[i]) {
10 i++;
11 count++;
 } // end while
12 send(count);

Amplified vs. Simple Control Dependencies

�20

 7 var arr = ["covert.com", "priv.com"/*,..*/];
 8 var i=0, count=0;
 9 while (arr[i] && url != arr[i]) {
10 i++;
11 count++;
 } // end while
12 send(count);

Amplified vs. Simple Control Dependencies

Lattice of Perceived Flow Strength

�21

Stronger!
Flow

Lattice of Perceived Flow Strength

�22

Stronger!
Flow

data

control

Lattice of Perceived Flow Strength

�23

Stronger!
Flow

amplified

not amplified

Lattice of Perceived Flow Strength

�24

Stronger!
Flow local

non local

Lattice of Perceived Flow Strength

�25

Stronger!
Flow syntax obvious

non obvious

Generating Security Signatures

• Use the PDG to reason about information flow in addons

• Use PDG annotations to classify flows

• Output a signature summarizing relevant flows

�26

Generating Security Signatures

• Use the PDG to reason about information flow in addons

• Use PDG annotations to classify flows

• Output a signature summarizing relevant flows

�26

url send (www.evil.com)
amplified local control flow

Generating Security Signatures

�27

Generating Security Signatures

�27

Generating Security Signatures

�27

Generating Security Signatures

�28

Generating Security Signatures

�29

Generating Security Signatures

�29

Generating Security Signatures

�30

Generating Security Signatures

�31

Generating Security Signatures

�32

Generating Security Signatures

�33

Generating Security Signatures

�33

Generating Security Signatures

�33

url send (www.evil.com)
amplified local control flow

Evaluation

• Evaluated analysis on 10 real addons from Mozilla repository

• Manually created security signatures based on submitted addon description

• Ran the analysis to get inferred signature, compared against our manual
signature

• Possible experimental outcomes:

• pass (no unexpected information flow)

• fail (false unexpected information flow)

• leak (true unexpected information flow)

�34

Results

�35

†
†

†In all these cases, the failure was due to insufficient precision in the string domain.

Conclusion

• Browser addon vetting is hard, needs automation

• Security signatures are useful to understand security behavior of addons

�36

Implementation available under the Downloads link at !
http://www.cs.ucsb.edu/~pllab

Acknowledgements

• Tommy Ashmore and Ben Wiedermann (Harvey Mudd College)

• Dave Herman (Mozilla Research)

• Mozilla Addon Vetting Team

�37

�38

vineeth@cs.ucsb.edu

Questions?

