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JavaScript-based Browser Addons
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Addons: JavaScript with High Privileges
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Urging Security Concern

• Proof of concept exploits 


• FFSniff, a configurable password stealer


• Unintentional vulnerabilities 


• Wikipedia Toolbar allowed arbitrary privileged code execution


• Intentionally malicious


• Key loggers
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Curated Repositories
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Manual JavaScript Addon Vetting is Difficult

• Ad-hoc


• Tedious


• Error-prone
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Our Goal: Help Automate the Vetting Process

• Automatically infer security signatures


• Summarize interesting information flows and critical API usages
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url                                                   send (www.evil.com)
amplified local control flow



Key Challenges

• Flexible security policies 

• No single policy applies for all addons


• Classifying Information Flows 

• Binary result (secure or insecure) is not enough


• Inferring Network Domains 

• Critical to reason about addon’s network communication 
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Our Solution

• Construct annotated Program Dependence Graphs (PDG)


• Use annotated PDGs to generate security signatures


• Use prefix string analysis to infer network domains communicated with
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Automatically summarize API usages, interesting 
information flows (classified based on the type of flow)



Annotated Program Dependence Graph

• Use JSAI† to construct a PDG


• Annotate the edges of PDG with the type of dependency
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† JSAI is a sound and efficient JavaScript abstract interpreter we developed.
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1 var data = {loc: url, other: 1} 
2 send(data[“loc”]); 
3 send(data[getString()]); 

Strong vs. Weak Data Dependency
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5 if (url == "secret.com") 
6   send(null); 

Local Control Dependency
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5 if (url == "secret.com") 
6   send(null); 

Local Control Dependency
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13 try { 
14   if (url != "hush-hush.com") 
15     throw "irrelevant"; 
16   send(null); 
17 } catch(x) {};

Syntax-obvious Non-local Control Dependency
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18 try { 
19   if (url != "mystic.com") 
20     obj.prop = 1; 
21   send(null); 
22 } catch(x) {}

Non-obvious Non-local Control Dependency
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18 try { 
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 7 var arr = ["covert.com", "priv.com"/*,..*/];  
 8 var i=0, count=0; 
 9 while (arr[i] && url != arr[i]) { 
10   i++; 
11   count++;  
   } // end while 
12 send(count); 

Amplified vs. Simple Control Dependencies
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Lattice of Perceived Flow Strength
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Lattice of Perceived Flow Strength
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Lattice of Perceived Flow Strength
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non obvious



Generating Security Signatures

• Use the PDG to reason about information flow in addons


• Use PDG annotations to classify flows


• Output a signature summarizing relevant flows
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Evaluation

• Evaluated analysis on 10 real addons from Mozilla repository 


• Manually created security signatures based on submitted addon description 


• Ran the analysis to get inferred signature, compared against our manual 
signature


• Possible experimental outcomes:


• pass (no unexpected information flow) 

• fail (false unexpected information flow) 

• leak (true unexpected information flow)
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Results
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†
†

†In all these cases, the failure was due to insufficient precision in the string domain.



Conclusion

• Browser addon vetting is hard, needs automation


• Security signatures are useful to understand security behavior of addons 
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Implementation available under the Downloads link at !
http://www.cs.ucsb.edu/~pllab
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