
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!1

Partial Escape Analysis and
Scalar Replacement for Java
Lukas Stadler
!
VM Research Group, Oracle Labs

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!3

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or functionality
described in connection with any Oracle product or service remains at the sole
discretion of Oracle. Any views expressed in this presentation are my own and
do not necessarily reflect the views of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!4

Lukas Stadler
Thomas Würthinger
Oracle Labs
!
Hanspeter Mössenböck
Johannes Kepler University Linz, Austria

Partial Escape Analysis and
Scalar Replacement for Java

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!5

Graal?
http://openjdk.java.net/projects/graal/

https://wiki.openjdk.java.net/display/Graal/

▪ Graal Resources

graal-dev@openjdk.java.net

$ hg clone http://hg.openjdk.java.net/graal/graal
$ cd graal
$./mx build
$./mx ideinit
$./mx vm <arguments>

graal-dev@openjdk.java.net

https://wiki.openjdk.java.net/display/Graal/

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!6

Escape Analysis

▪ Escape Analysis: 
Analyzes where references to new objects flow
!

▪ Looks for “escapes”
– Method call parameters
– Static fields
– Return value
– Throws
– …

class Foo {	!
	 static Object staticField;	
	 	
	 static void nonInlinedMethod(Object x) { ... }	
	 	
	 static Object example() {	
	 	 Object a = new Foo();	
	 	 Object b = new Foo();	
	 	 Object c = new Foo();	
	 	 	
	 	 staticField = a;	
	 	 	
	 	 nonInlinedMethod(b);	
	 	 	
	 	 return c;	
	 }	
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!7

Escape Analysis - Optimization Opportunities

▪ Allocated object is scope/method local
– Scalar Replacement: replace fields with local variables
!

▪ Allocated object is thread local
– Lock Removal: no other thread can see the object, no locking required
– Stack Allocation: automatic stack management, destroyed on return
!

▪ Allocated object escapes
– Escapes to other threads/methods, no optimizations possible

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

Escape Analysis - Example

public static Car getCached(int hp, String name) {
 Car car = new Car(hp, name, null);
 Car cacheEntry = null;
 for (int i = 0; i < cache.length; i++) {
 if (car.hp == cache[i].hp &&
 car.name == cache[i].name) {
 cacheEntry = cache[i];
 break;
 }
 }
 if (cacheEntry != null) {
 return cacheEntry;
 } else {
 return null;
 }
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!9

Escape Analysis - Example

!
public static Car getCached(int hp, String name) {
 Car cacheEntry = null;
 for (int i = 0; i < cache.length; i++) {
 if (hp == cache[i].hp &&
 name == cache[i].name) {
 cacheEntry = cache[i];
 break;
 }
 }
 if (cacheEntry != null) {
 return cacheEntry;
 } else {
 return null;
 }
}

! new Car(...) does not escape

! Allocation is removed

! Field loads replaced with values

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!10

Escape Analysis - e.g. Equi-Escape Sets

Escape

new Car // 2 new Car // 3

new Car // 4

new Car // 0 new Car // 1

𝚽 (a)

PutStatic

𝚽 (b)

𝚽 (c)

Car a, b, c;
if (...) {
 a = new Car(...) // 0
} else {
 a = new Car(...) // 1
}
if (...) {
 b = new Car(...) // 2
} else {
 b = new Car(...) // 3
}
if (...) {
 tmp = new Car(...) // 4
 staticField = tmp;
 c = tmp;
} else {
 c = b;
}

Thomas Kotzmann and Hanspeter Mössenböck. 2005. Escape analysis in the context of dynamic compilation and deoptimization.
In Proceedings of the 1st ACM/USENIX international conference on Virtual execution environments (VEE '05).

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!11

Partial Escape Analysis

public static Car getCached(int hp, String name) {
 Car car = new Car(hp, name, null);
 Car cacheEntry = null;
 for (int i = 0; i < cache.length; i++) {
 if (car.hp == cache[i].hp &&
 car.name == cache[i].name) {
 cacheEntry = cache[i];
 break;
 }
 }
 if (cacheEntry != null) {
 return cacheEntry;
 } else {
 addToCache(car);
 return car;
 }
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!12

Partial Escape Analysis

public static Car getCached(int hp, String name) {
 Car cacheEntry = null;
 for (int i = 0; i < cache.length; i++) {
 if (hp == cache[i].hp &&
 name == cache[i].name) {
 cacheEntry = cache[i];
 break;
 }
 }
 if (cacheEntry != null) {
 return cacheEntry;
 } else {
 Car car = new Car(hp, name, null);
 addToCache(car);
 return car;
 }
}

! new Car(...) escapes at:

— addToCache(car);

— return car;

! Might be a very unlikely path

! No allocation in frequent path
probability: ?%

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!13

Partial Escape Analysis

! Escape Analysis (EA): either remove allocation or not

! Partial Escape Analysis (PEA): push allocations into infrequent paths

— Which often allows removal of other object allocations

! PEA is (inherently) control-flow sensitive

— Analysis performs iteration over CFG

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!14

Partial Escape Analysis - Iteration

public static Car getCached(int hp, String name) {
 Car car = new Car(hp, name, null);
 Car cacheEntry = null;
 for (int i = 0; i < cache.length; i++) {
 if (car.hp == cache[i].hp &&
 car.name == cache[i].name) {
 cacheEntry = cache[i];
 break;
 }
 }
 if (cacheEntry != null) {
 return cacheEntry;
 } else {
 addToCache(car);
 return car;
 }
}Loop

new Car(hp, name, null);

if (car.hp == cache[i].hp &&
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!15

Partial Escape Analysis - Iteration

Loop

new Car(hp, name, null);

if (car.hp == cache[i].hp &&
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

Current state of Escape Analyzed
object during CFG iteration: !
virtual, contents = (...)

Object does not escape
(up until current point) !

materialized
Object has escaped
(and was allocated)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!16

Partial Escape Analysis - Iteration

Loop

if (car.hp == cache[i].hp &&
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

virtual
contents = (hp, name, null)

VirtualObject

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!17

Partial Escape Analysis - Iteration

Loop

if (car.hp == cache[i].hp &&
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++) virtual
contents = (hp, name, null)

VirtualObject

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!18

Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

virtual
contents = (hp, name, null)

VirtualObject

if (hp == cache[i].hp &&
 name == cache[i].name)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!19

Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

virtual
contents = (hp, name, null)

VirtualObject

if (hp == cache[i].hp &&
 name == cache[i].name)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!20

Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

virtual
contents = (hp, name, null)

VirtualObject

if (hp == cache[i].hp &&
 name == cache[i].name)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!21

Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;materialize(car)
addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

materialized

VirtualObject

if (hp == cache[i].hp &&
 name == cache[i].name)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!22

Partial Escape Analysis - Iteration

Loop

VirtualObject

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;materialize(car)
addToCache(car);
return car;

for (int i = 0; i < cache.length; i++)

virtual
contents = (hp, name, null)

if (hp == cache[i].hp &&
 name == cache[i].name)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!23

Partial Escape Analysis - Iteration

! Performs EA of all allocations in one iteration

— Replaces IR nodes with virtualization effect

! Interfaces on IR node classes:

— interface VirtualizableAllocation

• Nodes that produce a virtualizable object (NewInstance, NewArray, ...)

— interface Virtualizable

• Nodes that have a virtualizable effect (StoreField, LoadIndexed, ...)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!24

Partial Escape Analysis - Iteration

obj.a = 1; obj.a = 2;

...

virtual
contents = (2)

virtual
contents = (1)

virtual
contents = (𝚽(1,2))

! Control Flow Merge

— New Phi function

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!25

Partial Escape Analysis - Iteration

x = new A();
obj.a = x;

y = new B();
obj.a = y;

...

obj: virtual (x)
x: virtual ()

! Control Flow Merge

— Merge of virtualized objects

obj: virtual (y)
y: virtual ()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!26

Partial Escape Analysis - Iteration

x = new A();
obj.a = x;
materialize(x)

y = new B();
obj.a = y;
materialize(y)

...

obj: virtual (x)
x: materialized

obj: virtual (𝚽(x,y))

! Control Flow Merge

— Merge of virtualized objects

obj: virtual (y)
y: materialized

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!27

Partial Escape Analysis - Iteration

! Loops

— Requires backtracking

Loop

for (...)

staticField = a;

a = new A();

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!28

Partial Escape Analysis - Iteration

! Loops

— Requires backtracking

a: virtual ()

Loop

for (...)

staticField = a;

VirtualObject

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!29

Partial Escape Analysis - Iteration

! Loops

— Requires backtracking

a: virtual ()

Loop

for (...) a: virtual ()

VirtualObject

staticField = a;

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!30

Partial Escape Analysis - Iteration

! Loops

— Requires backtracking

a: virtual ()

Loop

for (...)

materialize(a)
staticField = a;

a: virtual ()

a: materialized

VirtualObject

x

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!31

Partial Escape Analysis - Iteration

VirtualObject

! Loops

— Requires backtracking

a: materialized

Loop

for (...)

staticField = a;

a: materialized

a: materialized

materialize(a)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!32

Evaluation

▪ Effects of Partial Escape Analysis:
– Fewer allocations: less code
– Fewer allocations: less GC work, less work for allocations
– Fewer lock / unlock operations
– Scalar Replacement: remove accesses
– Coalescing allocations
– Values not flowing through objects: easier for compiler
– Clever handling of Boxing/Unboxing operations
!

▪ Impact on Compilation Time in Graal: 3.5 - 4%
– Half of this is spent on scheduling
!

▪ Easy to implement PEA for new constructs:
– Simply add virtualize method to new node type

!

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!33

Example - DaCapo sunflow

public Color getIrradiance(ShadingState state, Color diffRefl) {	
 float b = (float) Math.PI * c / diffRefl.getMax();	
 Color irr = Color.black();	
 Point3 p = state.getPoint();	
 Vector3 n = state.getNormal();	
 int set = (int) (state.getRandom(0, 1, 1) * numSets);	
 for (PointLight pl : virtualLights[set]) {	
 Ray r = new Ray(p, pl.p);	
 float dotNlD = -(r.dx * pl.n.x + r.dy * pl.n.y + r.dz * pl.n.z);	
 float dotND = r.dx * n.x + r.dy * n.y + r.dz * n.z;	
 if (dotNlD > 0 && dotND > 0) {	
 float r2 = r.getMax() * r.getMax();	
 Color opacity = state.traceShadow(r);	
 Color power = Color.blend(pl.power, Color.BLACK, opacity);	
 float g = (dotND * dotNlD) / r2;	
 irr.madd(0.25f * Math.min(g, b), power);	
 }	
 }	
 return irr;	
}

count: ~130

probability: 56%

Partial Escape Analysis:
… removed 33% of allocation sites
… removed 64% of dynamic allocations (EA: 36%)
… reduced size of method by 18%

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!34

Evaluation - DaCapo

-4%

0%

4%

8%

12%

16%

fop jython tradebeans average

Removed Allocation Sites Removed Allocation Bytes Speedup

Xeon E5-2690, 2GB heap

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!35

Evaluation - Scala DaCapo

0%

20%

40%

60%

80%

actors factorie specs average

Removed Allocation Sites Removed Allocation Bytes Speedup

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!36

Evaluation - SPECjbb2005

0%

10%

20%

30%

40%

SPECjbb2005

Removed Allocation Sites Removed Allocation Bytes Speedup

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!37

Evaluation - Comparison to Server Compiler

0%

2%

4%

6%

8%

10%

12%

DaCapo Scala DaCapo SPECjbb2005

Speedup by EA on Server Compiler Speedup by PEA on Graal

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!38

Conclusions

▪ Scheduling is costly
– Non-scheduling version
– Special scheduling that only places some nodes
!

▪ Efficient way to perform Escape Analysis
!

▪ Very important for Truffle framework
– Can be applied multiple times during compilation

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!39

Acknowledgements

!
The Graal Team:	

Gilles Duboscq (JKU)
Christian Häubl (JKU)	

Christos Kotselidis (Oracle Labs)	

Prof. Hanspeter Mössenböck (JKU)	

Roland Schatz (Oracle Labs)	

Doug Simon (Oracle Labs)	

Lukas Stadler (Oracle Labs)	

Bernhard Urban (JKU)
Christian Wimmer (Oracle Labs)	

Thomas Würthinger (Oracle Labs)	

!

Q&A

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!40

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!41

