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Graal?
http://openjdk.java.net/projects/graal/

https://wiki.openjdk.java.net/display/Graal/

▪ Graal Resources

graal-dev@openjdk.java.net

$ hg clone http://hg.openjdk.java.net/graal/graal 
$ cd graal 
$ ./mx build 
$ ./mx ideinit 
$ ./mx vm <arguments>

graal-dev@openjdk.java.net

https://wiki.openjdk.java.net/display/Graal/
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Escape Analysis

▪ Escape Analysis: 
Analyzes where references to new objects flow 
!

▪ Looks for “escapes” 
– Method call parameters 
– Static fields 
– Return value 
– Throws 
– …

class Foo {	!
	 static Object staticField;	
	 	
	 static void nonInlinedMethod(Object x) { ... }	
	 	
	 static Object example() {	
	 	 Object a = new Foo();	
	 	 Object b = new Foo();	
	 	 Object c = new Foo();	
	 	 	
	 	 staticField = a;	
	 	 	
	 	 nonInlinedMethod(b);	
	 	 	
	 	 return c;	
	 }	
}
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Escape Analysis - Optimization Opportunities

▪ Allocated object is scope/method local 
– Scalar Replacement: replace fields with local variables 
!

▪ Allocated object is thread local 
– Lock Removal: no other thread can see the object, no locking required 
– Stack Allocation: automatic stack management, destroyed on return 
!

▪ Allocated object escapes 
– Escapes to other threads/methods, no optimizations possible
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Escape Analysis - Example

public static Car getCached(int hp, String name) { 
 Car car = new Car(hp, name, null); 
 Car cacheEntry = null; 
 for (int i = 0; i < cache.length; i++) { 
  if (car.hp == cache[i].hp && 
     car.name == cache[i].name) { 
   cacheEntry = cache[i]; 
   break; 
  } 
 } 
 if (cacheEntry != null) { 
  return cacheEntry; 
 } else { 
  return null; 
 } 
}



Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!9

Escape Analysis - Example

!
public static Car getCached(int hp, String name) { 
 Car cacheEntry = null; 
 for (int i = 0; i < cache.length; i++) { 
  if (hp == cache[i].hp && 
     name == cache[i].name) { 
   cacheEntry = cache[i]; 
   break; 
  } 
 } 
 if (cacheEntry != null) { 
  return cacheEntry; 
 } else { 
  return null; 
 } 
}

! new Car(...) does not escape 

! Allocation is removed 

! Field loads replaced with values
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Escape Analysis - e.g. Equi-Escape Sets

Escape

new Car // 2 new Car // 3

new Car // 4

new Car // 0 new Car // 1

𝚽 (a)

PutStatic

𝚽 (b)

𝚽 (c)

Car a, b, c; 
if (...) { 
 a = new Car(...) // 0  
} else { 
 a = new Car(...) // 1 
} 
if (...) { 
 b = new Car(...) // 2  
} else { 
 b = new Car(...) // 3 
} 
if (...) { 
 tmp = new Car(...) // 4 
 staticField = tmp; 
 c = tmp; 
} else { 
 c = b; 
}

Thomas Kotzmann and Hanspeter Mössenböck. 2005. Escape analysis in the context of dynamic compilation and deoptimization. 
In Proceedings of the 1st ACM/USENIX international conference on Virtual execution environments (VEE '05).
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Partial Escape Analysis

public static Car getCached(int hp, String name) { 
 Car car = new Car(hp, name, null); 
 Car cacheEntry = null; 
 for (int i = 0; i < cache.length; i++) { 
  if (car.hp == cache[i].hp && 
     car.name == cache[i].name) { 
   cacheEntry = cache[i]; 
   break; 
  } 
 } 
 if (cacheEntry != null) { 
  return cacheEntry; 
 } else { 
  addToCache(car); 
  return car; 
 } 
}
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Partial Escape Analysis

public static Car getCached(int hp, String name) { 
 Car cacheEntry = null; 
 for (int i = 0; i < cache.length; i++) { 
  if (hp == cache[i].hp && 
     name == cache[i].name) { 
   cacheEntry = cache[i]; 
   break; 
  } 
 } 
 if (cacheEntry != null) { 
  return cacheEntry; 
 } else { 
  Car car = new Car(hp, name, null); 
  addToCache(car); 
  return car; 
 } 
}

! new Car(...) escapes at: 

— addToCache(car); 

— return car; 

! Might be a very unlikely path 

! No allocation in frequent path
probability: ?%
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Partial Escape Analysis

! Escape Analysis (EA): either remove allocation or not 

! Partial Escape Analysis (PEA): push allocations into infrequent paths 

— Which often allows removal of other object allocations 

! PEA is (inherently) control-flow sensitive 

— Analysis performs iteration over CFG
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Partial Escape Analysis - Iteration

public static Car getCached(int hp, String name) { 
 Car car = new Car(hp, name, null); 
 Car cacheEntry = null; 
 for (int i = 0; i < cache.length; i++) { 
  if (car.hp == cache[i].hp && 
     car.name == cache[i].name) { 
   cacheEntry = cache[i]; 
   break; 
  } 
 } 
 if (cacheEntry != null) { 
  return cacheEntry; 
 } else { 
  addToCache(car); 
  return car; 
 } 
}Loop

new Car(hp, name, null);

if (car.hp == cache[i].hp && 
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)
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Partial Escape Analysis - Iteration

Loop

new Car(hp, name, null);

if (car.hp == cache[i].hp && 
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

Current state of Escape Analyzed 
object during CFG iteration: !
virtual, contents = (...) 

Object does not escape 
(up until current point) !

materialized 
Object has escaped 
(and was allocated) 
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Partial Escape Analysis - Iteration

Loop

if (car.hp == cache[i].hp && 
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

virtual 
contents = (hp, name, null)

VirtualObject
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Partial Escape Analysis - Iteration

Loop

if (car.hp == cache[i].hp && 
 car.name == cache[i].name)

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++) virtual 
contents = (hp, name, null)

VirtualObject
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Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

virtual 
contents = (hp, name, null)

VirtualObject

if (hp == cache[i].hp && 
     name == cache[i].name)
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Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

virtual 
contents = (hp, name, null)

VirtualObject

if (hp == cache[i].hp && 
     name == cache[i].name)
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Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

virtual 
contents = (hp, name, null)

VirtualObject

if (hp == cache[i].hp && 
     name == cache[i].name)
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Partial Escape Analysis - Iteration

LoopcacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;materialize(car) 
addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

materialized

VirtualObject

if (hp == cache[i].hp && 
     name == cache[i].name)
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Partial Escape Analysis - Iteration

Loop

VirtualObject

cacheEntry = cache[i];

if (cacheEntry == null)

return cacheEntry;materialize(car) 
addToCache(car); 
return car;

for (int i = 0; i < cache.length; i++)

virtual 
contents = (hp, name, null)

if (hp == cache[i].hp && 
     name == cache[i].name)
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Partial Escape Analysis - Iteration

! Performs EA of all allocations in one iteration 

— Replaces IR nodes with virtualization effect 

! Interfaces on IR node classes: 

— interface VirtualizableAllocation 

• Nodes that produce a virtualizable object (NewInstance, NewArray, ...) 

— interface Virtualizable 

• Nodes that have a virtualizable effect (StoreField, LoadIndexed, ...)
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Partial Escape Analysis - Iteration

obj.a = 1; obj.a = 2;

...

virtual 
contents = (2)

virtual 
contents = (1)

virtual 
contents = (𝚽(1,2))

! Control Flow Merge 

— New Phi function
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Partial Escape Analysis - Iteration

x = new A(); 
obj.a = x;

y = new B(); 
obj.a = y;

...

obj: virtual (x) 
x:   virtual ()

! Control Flow Merge 

— Merge of virtualized objects

obj: virtual (y) 
y:   virtual ()
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Partial Escape Analysis - Iteration

x = new A(); 
obj.a = x; 
materialize(x)

y = new B(); 
obj.a = y; 
materialize(y)

...

obj: virtual (x) 
x:   materialized

obj: virtual (𝚽(x,y))

! Control Flow Merge 

— Merge of virtualized objects

obj: virtual (y) 
y:   materialized
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Partial Escape Analysis - Iteration

! Loops 

— Requires backtracking

Loop

for (...)

staticField = a;

a = new A();



Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!28

Partial Escape Analysis - Iteration

! Loops 

— Requires backtracking

a: virtual ()

Loop

for (...)

staticField = a;

VirtualObject
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Partial Escape Analysis - Iteration

! Loops 

— Requires backtracking

a: virtual ()

Loop

for (...) a: virtual ()

VirtualObject

staticField = a;



Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!30

Partial Escape Analysis - Iteration

! Loops 

— Requires backtracking

a: virtual ()

Loop

for (...)

materialize(a) 
staticField = a;

a: virtual ()

a: materialized

VirtualObject

x
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Partial Escape Analysis - Iteration

VirtualObject

! Loops 

— Requires backtracking

a: materialized

Loop

for (...)

staticField = a;

a: materialized

a: materialized

materialize(a)
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Evaluation

▪ Effects of Partial Escape Analysis: 
– Fewer allocations: less code 
– Fewer allocations: less GC work, less work for allocations 
– Fewer lock / unlock operations 
– Scalar Replacement: remove accesses 
– Coalescing allocations 
– Values not flowing through objects: easier for compiler 
– Clever handling of Boxing/Unboxing operations 
!

▪ Impact on Compilation Time in Graal: 3.5 - 4% 
– Half of this is spent on scheduling 
!

▪ Easy to implement PEA for new constructs: 
– Simply add virtualize method to new node type 

!



Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!33

Example - DaCapo sunflow

public Color getIrradiance(ShadingState state, Color diffRefl) {	
  float b = (float) Math.PI * c / diffRefl.getMax();	
  Color irr = Color.black();	
  Point3 p = state.getPoint();	
  Vector3 n = state.getNormal();	
  int set = (int) (state.getRandom(0, 1, 1) * numSets);	
  for (PointLight pl : virtualLights[set]) {	
    Ray r = new Ray(p, pl.p);	
    float dotNlD = -(r.dx * pl.n.x + r.dy * pl.n.y + r.dz * pl.n.z);	
    float dotND = r.dx * n.x + r.dy * n.y + r.dz * n.z;	
    if (dotNlD > 0 && dotND > 0) {	
      float r2 = r.getMax() * r.getMax();	
      Color opacity = state.traceShadow(r);	
      Color power = Color.blend(pl.power, Color.BLACK, opacity);	
      float g = (dotND * dotNlD) / r2;	
      irr.madd(0.25f * Math.min(g, b), power);	
    }	
  }	
  return irr;	
}

count: ~130

probability: 56%

Partial Escape Analysis: 
… removed 33% of allocation sites 
… removed 64% of dynamic allocations (EA: 36%) 
… reduced size of method by 18%
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Evaluation - DaCapo
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Evaluation - Scala DaCapo
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Evaluation - SPECjbb2005

0%

10%

20%

30%

40%

SPECjbb2005

Removed Allocation Sites Removed Allocation Bytes Speedup



Copyright © 2013, Oracle and/or its affiliates. All rights reserved.Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!37

Evaluation - Comparison to Server Compiler
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Conclusions

▪ Scheduling is costly 
– Non-scheduling version 
– Special scheduling that only places some nodes 
!

▪ Efficient way to perform Escape Analysis 
!

▪ Very important for Truffle framework 
– Can be applied multiple times during compilation
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