
Efficient Mapping of Irregular C++ Applications to
Integrated GPUs

Rajkishore Barik (Presenter)
Rashid Kaleem, UT Austin

Deepak Majeti, Rice University
Brian T. Lewis, Intel Labs

Tatiana Shpeisman, Intel Labs
Chunling Hu, Intel Labs

Yang Ni, Google
Ali-Reza Adl-Tabatabai, Google

Heterogeneous Platforms

•  Heterogeneity is ubiquitous: mobile devices, laptops, servers, &
supercomputers

•  Emerging hardware trend: CPU & GPU cores integrated on same die,
share physical memory & even last-level cache

2 2/27/14

Intel 4th generation core processors AMD Trinity

Source: http://www.hardwarezone.com.my/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118

Programming Systems Lab, Intel Labs

How do we program these integrated GPU systems?

Motivation: GPU Programming

•  Existing work: regular data-parallel applications using array-
based data structures map well to the GPUs
–  OpenCL 1.x, CUDA, OpenACC, C++ AMP, …

•  Enable other existing multi-core applications to quickly take
advantage of the integrated GPUs
–  Often use object-oriented design, pointers

•  Enable pointer-based data structures on the GPU
–  Irregular applications on GPU: benefits are not well-understood

•  Data-dependent control flow
–  Graph-based algorithms such as BFS, SSSP, etc.

2/27/14 Programming Systems Lab, Intel Labs 3

Widen the set of applications that target GPUs

Contributions
•  Concord: a seamless C++ heterogeneous

programming framework for integrated CPU
and GPU processors
–  Shared Virtual Memory (SVM) in software

•  share pointer-containing data structures like trees
–  Adapts existing data-parallel C/C++ constructs to

heterogeneous computing: TBB, OpenMP
–  Supports most C++ features including virtual functions
–  Demonstrates programmability, performance, and

energy benefits of SVM

•  Available open source at https://github.com/

IntelLabs/iHRC/

2/27/14 Programming Systems Lab, Intel Labs 4

Concord Framework

2/27/14 5

OpenCL	 to	
GPU	 ISA	

GPU	
binary	

OpenCL	 JIT	
Compiler	

CLANG	

LLVM	

OpenCL	 	
code	 gen	

Object:	 IA	 binary	 +	 OpenCL	

IA	 	
code	 gen	

Linker	

Executable:	 IA	 binary	 +	 OpenCL	

StaFc	
Concord	
compiler	

Concord	 C++	

Compute	 	
runFme	

CPU	 GPU	

Programming Systems Lab, Intel Labs

Concord C++ programming constructs

Concord extends TBB APIs:
template <class Body>
parallel_for_hetero (int numiters, const Body &B,
 bool device);

template <class Body>
parallel_reduce_hetero (int numiters, const Body &B,

 bool device);

Supported C++ features:
•  Classes
•  Namespaces
•  Multiple inheritance
•  Templates
•  Operator and function overloading!
•  Virtual functions

Currently not supported on GPU
•  Recursion
•  Exceptions
•  Memory allocation

6 2/27/14 Programming Systems Lab, Intel Labs

Existing TBB APIs:
template <typename Index, typename Body>
parallel_for (Index first, Index last, const Body& B)

template <typename Index, typename Body>
parallel_reduce (Index first, Index last, const Body& B)

class ListSearch {
…
void operator()(int tid) const{
 ... list->key...
}};
…
ListSearch *list_object = new ListSearch(…);

parallel_for_hetero (num_keys, *list_object, GPU);

class ListSearch {
…
void operator()(int tid) const{
 ... list->key...
}};
…
ListSearch *list_object = new ListSearch(…);

parallel_for(0, num_keys, *list_object);

Concord Version

Run on CPU
or GPU

Concord C++ Example: Parallel LinkedList Search

Minimal differences between two versions

Concord Version TBB Version

2/27/14 Programming Systems Lab, Intel Labs 7

Key Implementation Challenges

•  Shared Virtual Memory (SVM) support to enable pointer-
sharing between CPU and GPU
•  Compiler optimization to reduce SVM translation overheads

•  Virtual functions on GPU

•  Parallel reduction on GPU [paper]

•  Compiler optimizations to reduce cache line contention [paper]

8 2/27/14 Programming Systems Lab, Intel Labs

SVM Implementation on IA

0x0…0

Shared
physical memory

CPU
virtual memory

SVM: Address
shared with
GPU (pinned)

CPU_Base

CPU_ptr

GPU
virtual memory

GPU surface
mapped to
shared area

GPU_Base

GPU_ptr

9 2/27/14

GPU_ptr = GPU_Base + CPU_ptr – CPU_Base

Programming Systems Lab, Intel Labs

offset

offset

SVM Translation in OpenCL code

2/27/14 10

class ListSearch {
…
void operator()(int tid) const{
 ... list->key...
}};
…
ListSearch *list_object = new ListSearch(…);

parallel_for_hetero (num_keys, *list_object, GPU);

//__global char * svm_const = (GPU_Base – CPU_Base);

#define AS_GPU_PTR(T,p) (__global T *) (svm_const + p)

__kernel void opencl_operator (
 __global char *svm_const,
 unsigned long B_ptr) {

 AS_GPU_PTR(LinkedList, list)->key…
}

•  svm_const is a runtime constant and is computed once
•  Every CPU pointer before dereference on the GPU is converted into GPU

addressspace using AS_GPU_PTR

Generated OpenCL Concord C++

Programming Systems Lab, Intel Labs

Compiler Optimization of SVM Translations

•  Best strategy:
–  Eagerly convert to GPU addressspace & keep both CPU & GPU representations
–  If a store is encountered, use CPU representation
–  Additional optimizations

•  Dead-code elimination
•  Optimal code motion to perform redundancy elimination and place the translations

int **a = data->a;
for (int i=0; i<N; i++)
 … = a[i];
// a[i] is not used after this

2/27/14 11

int **a = AS_GPU_PTR(int *, data->a);
for (int i=0; i<N; i++)
 … = AS_CPU_PTR(int,
 AS_GPU_PTR(int, a[i]));

int **a = data->a;
for (int i=0; i<N; i++)
 … = AS_GPU_PTR(int *, a)[i];

int **a = AS_GPU_PTR(int *, data->a);
for (int i=0; i<N; i++)
 … = a[i];

Eager Best

Overhead: 2N + 1 Overhead: N Overhead: 1

Lazy

Programming Systems Lab, Intel Labs

Virtual Functions on GPU

Original hierarchy:
class Shape {
 virtual void intersect() {…}
 virtual void compute() {…}
};
class Triangle : Shape {
 virtual void intersect() {…}
};

Virtual Function call:
void foo(Shape *s) {
 s->compute();
}

CPU Virtual Function call:
void foo(Shape *s) {
 (s->vtableptr[1])();
}

2/27/14 12

Object layout with vtable:

Generated code Original code

Programming Systems Lab, Intel Labs

GPU Virtual Function call:
void foo(Shape *s, void *gCtx) {
 if (s->vtableptr[1] == gCtx->
 Shape::compute)
 Shape::compute();
}

•  Copy necessary metadata into shared memory for GPU access
•  Translate virtual function calls into if-then-else statements

 vtableptr intersect

 compute

Shape Shape::vtable

 vtableptr intersect

 Shape:compute

Triangle Triangle::vtable

Copy to
shared
memory

Experimental setup

•  Experimental Platform:
–  Intel Core 4th Generation Ultrabook

•  CPU: 2 cores, hyper-threaded, 1.7GHz
•  GPU: Intel HD Graphics 5000 with 40 cores, 200MHz-1.1GHz
•  Power envelope 15W

–  Intel Core 4th Generation Desktop
•  CPU: 4 cores, hyper-threaded, 3.4GHz
•  GPU: Intel HD Graphics 4600 with 20 cores, 350MHz-1.25GHz
•  Power envelope 84W

•  Energy measurements: MSR_PKG_ENERGY_STATUS

•  Comparison with multi-core CPU:
1.  GPU-SPEEDUP: speedup using GPU execution
2.  GPU-ENERGY-SAVINGS: energy savings using GPU execution

13 2/27/14 Programming Systems Lab, Intel Labs

Workloads

2/27/14 Programming Systems Lab, Intel Labs 14

*uses virtual function

Dynamic estimates of irregularity

2/27/14 Programming Systems Lab, Intel Labs 15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

control memory remaining

•  BFS, Btree, ConnComp, FaceDetect, SkipList & SSSP exhibit a lot of irregularities (>50%)
•  FaceDetect exhibits maximum percentage of memory irregularities

Ultrabook: Speedup & Energy savings compared to multicore CPU

2/27/14 Programming Systems Lab, Intel Labs 16

0

1

2

3

4

5

6

7

8

9

10

hi
gh

er
 t

he
 b

et
te

r

GPU-SPEEDUP GPU-ENERGY-SAVINGS

Average speedup of 2.5x and energy savings of 2x vs. multicore CPU

Desktop: Speedup & Energy savings compared to multicore CPU

2/27/14 Programming Systems Lab, Intel Labs 17

0

0.5

1

1.5

2

2.5

3

3.5

4

hi
gh

er
 t

he
 b

et
te

r

GPU-SPEEDUP GPU-ENERGY-SAVINGS

Average speedup of 1.01x and energy savings of 1.7x vs. multicore CPU

Overhead of SW-based SVM implementation

2/27/14 18

0
1
2
3
4
5
6
7

1000x1000 2000x2000 2400x2400 3000x3000 3200x3200 Ex
ec

ut
io
n

ti
m
e

in
 s

ec
on

ds

Image size

GPU-OPENCL GPU-CONCORD

SW-based SVM overhead is negligible for smaller images and is ˜6% for the largest image

Programming Systems Lab, Intel Labs

Raytracer

Conclusions & Future work

•  Runs out-of-the-box C++ applications on GPU
•  Demonstrates that SVM is a key enabler in programmer

productivity of heterogeneous systems
•  Implements SVM in software with low-overhead
•  Implements virtual functions and parallel reductions on GPU
•  Saves energy of 2.04x on Ultrabook and 1.7x on Desktop

compared to multi-core CPU for irregular applications

•  Future work:

–  Support advanced features on GPU: exceptions, memory
allocation, locks, etc.

–  Support combined CPU+GPU heterogeneous execution

2/27/14 19 Programming Systems Lab, Intel Labs

Questions?

Please try it out:
https://github.com/IntelLabs/iHRC/

2/27/14 Programming Systems Lab, Intel Labs 20

Cloth Physics demo using Concord:

