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Heterogeneous Platforms 

•  Heterogeneity is ubiquitous: mobile devices, laptops, servers, & 
supercomputers 

•  Emerging hardware trend: CPU & GPU cores integrated on same die, 
share physical memory & even last-level cache 
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Intel 4th generation core processors AMD Trinity 

Source: http://www.hardwarezone.com.my/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118 
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How do we program these integrated GPU systems? 



Motivation: GPU Programming 

•  Existing work: regular data-parallel applications using array-
based data structures map well to the GPUs 
–  OpenCL 1.x, CUDA, OpenACC, C++ AMP, … 
 

•  Enable other existing multi-core applications to quickly take 
advantage of the integrated GPUs 
–  Often use object-oriented design, pointers 

•  Enable pointer-based data structures on the GPU 
–  Irregular applications on GPU: benefits are not well-understood 

•  Data-dependent control flow 
–  Graph-based algorithms such as BFS, SSSP, etc. 
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Widen the set of applications that target GPUs 



Contributions 
•  Concord: a seamless C++ heterogeneous 

programming framework for integrated CPU 
and GPU processors 
–  Shared Virtual Memory (SVM) in software 

•  share pointer-containing data structures like trees 
–  Adapts existing data-parallel C/C++ constructs to 

heterogeneous computing: TBB, OpenMP 
–  Supports most C++ features including virtual functions 
–  Demonstrates programmability, performance, and 

energy benefits of SVM 
 

 
•  Available open source at https://github.com/

IntelLabs/iHRC/ 
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Concord Framework 
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Concord C++ programming constructs 

Concord extends TBB APIs: 
template <class Body> 
parallel_for_hetero (int numiters, const Body &B,  
                                bool device); 

template <class Body> 
parallel_reduce_hetero (int numiters, const Body &B,                                                   

           bool device); 
 
Supported C++ features:  
•  Classes 
•  Namespaces 
•  Multiple inheritance 
•  Templates 
•  Operator and function overloading!
•  Virtual functions 

Currently not supported on GPU 
•  Recursion 
•  Exceptions 
•  Memory allocation 
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Existing TBB APIs: 
template <typename Index, typename Body>  
parallel_for (Index first, Index last, const Body& B) 
 
 
 
template <typename Index, typename Body>  
parallel_reduce (Index first, Index last, const Body& B)  



class ListSearch { 
… 
void operator()(int tid)  const{ 
     ... list->key... 
}}; 
… 
ListSearch *list_object = new ListSearch(…); 
 
 
parallel_for_hetero (num_keys, *list_object, GPU);  

class ListSearch { 
… 
void operator()(int tid) const{ 
     ... list->key... 
}}; 
… 
ListSearch *list_object = new ListSearch(…); 
 
 
parallel_for(0, num_keys, *list_object);  

Concord Version 

Run on CPU  
or GPU 

Concord C++ Example: Parallel LinkedList Search 

Minimal differences between two versions 

Concord Version TBB Version 
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Key Implementation Challenges 

•  Shared Virtual Memory (SVM) support to enable pointer-
sharing between CPU and GPU 
•  Compiler optimization to reduce SVM translation overheads 

 
•  Virtual functions on GPU 

•  Parallel reduction on GPU [paper] 

•  Compiler optimizations to reduce cache line contention [paper] 
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SVM Implementation on IA 

0x0…0 

Shared  
physical memory 

CPU  
virtual memory 

SVM: Address 
shared with  
GPU (pinned) 

CPU_Base 

CPU_ptr 

GPU  
virtual memory 

GPU surface 
mapped to 
shared area 

GPU_Base 

GPU_ptr 
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GPU_ptr = GPU_Base + CPU_ptr – CPU_Base 
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offset 

offset 



SVM Translation in OpenCL code 
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class ListSearch { 
… 
void operator()(int tid)  const{ 
     ... list->key... 
}}; 
… 
ListSearch *list_object = new ListSearch(…); 
 
parallel_for_hetero (num_keys, *list_object, GPU);  

 
//__global char * svm_const = (GPU_Base – CPU_Base); 
 
#define AS_GPU_PTR(T,p) (__global T *) (svm_const + p) 
 
__kernel void opencl_operator ( 
       __global char *svm_const,  
       unsigned long B_ptr) { 
   
    AS_GPU_PTR(LinkedList, list)->key… 
} 

•  svm_const is a runtime constant and is computed once 
•  Every CPU pointer before dereference on the GPU is converted into GPU 

addressspace using AS_GPU_PTR  

Generated OpenCL Concord C++ 
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Compiler Optimization of SVM Translations 

•  Best strategy: 
–  Eagerly convert to GPU addressspace & keep both CPU & GPU representations 
–  If a store is encountered, use CPU representation 
–  Additional optimizations 

•  Dead-code elimination 
•  Optimal code motion to perform redundancy elimination and place the translations 

 

int **a = data->a; 
for ( int i=0; i<N; i++) 
  … = a[i]; 
// a[i] is not used after this 
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int **a = AS_GPU_PTR(int *, data->a); 
for ( int i=0; i<N; i++) 
   … = AS_CPU_PTR(int,  
        AS_GPU_PTR(int, a[i])); 

int **a = data->a; 
for ( int i=0; i<N; i++) 
   … = AS_GPU_PTR(int *, a)[i]; 
   

int **a = AS_GPU_PTR(int *, data->a); 
for ( int i=0; i<N; i++) 
  … = a[i]; 
   

Eager Best 

Overhead: 2N + 1 Overhead: N Overhead: 1 

Lazy 
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Virtual Functions on GPU 

Original hierarchy: 
class Shape { 
  virtual void intersect() {…} 
  virtual void compute() {…} 
}; 
class Triangle : Shape { 
  virtual void intersect() {…} 
}; 
 
Virtual Function call: 
void foo(Shape *s) { 
  s->compute(); 
} 
 
 

 
CPU Virtual Function call: 
void foo(Shape *s) { 
  (s->vtableptr[1])(); 
} 
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Object layout with vtable: 
 
 

Generated code Original code 
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GPU Virtual Function call: 
void foo(Shape *s, void *gCtx) { 
  if (s->vtableptr[1] == gCtx->      
                Shape::compute)  
     Shape::compute(); 
} 
 

•  Copy necessary metadata into shared memory for GPU access 
•  Translate virtual function calls into if-then-else statements 

   vtableptr    intersect 

   compute 

Shape Shape::vtable 

   vtableptr    intersect 

   Shape:compute 

Triangle Triangle::vtable 

Copy to 
shared 
memory 



Experimental setup 

•  Experimental Platform:  
–  Intel Core 4th Generation Ultrabook 

•  CPU: 2 cores, hyper-threaded, 1.7GHz 
•  GPU: Intel HD Graphics 5000 with 40 cores, 200MHz-1.1GHz 
•  Power envelope 15W 

–  Intel Core 4th Generation Desktop 
•  CPU: 4 cores, hyper-threaded, 3.4GHz 
•  GPU: Intel HD Graphics 4600 with 20 cores, 350MHz-1.25GHz 
•  Power envelope 84W 

•  Energy measurements: MSR_PKG_ENERGY_STATUS 

•  Comparison with multi-core CPU:  
1.  GPU-SPEEDUP: speedup using GPU execution   
2.  GPU-ENERGY-SAVINGS: energy savings using GPU execution 
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Workloads 
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*uses virtual function 



Dynamic estimates of irregularity 
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•  BFS, Btree, ConnComp, FaceDetect, SkipList & SSSP exhibit a lot of irregularities (>50%) 
•  FaceDetect exhibits maximum percentage of memory irregularities 



Ultrabook: Speedup & Energy savings compared to multicore CPU 
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Average speedup of 2.5x and energy savings of 2x vs. multicore CPU 



Desktop: Speedup & Energy savings compared to multicore CPU 
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Average speedup of 1.01x and energy savings of 1.7x vs. multicore CPU 



Overhead of SW-based SVM implementation 
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Image size 

GPU-OPENCL GPU-CONCORD 

SW-based SVM overhead is negligible for smaller images and is ˜6% for the largest image 
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Raytracer 



Conclusions & Future work 

•  Runs out-of-the-box C++ applications on GPU 
•  Demonstrates that SVM is a key enabler in programmer 

productivity of heterogeneous systems 
•  Implements SVM in software with low-overhead 
•  Implements virtual functions and parallel reductions on GPU 
•  Saves energy of 2.04x on Ultrabook and 1.7x on Desktop 

compared to multi-core CPU for irregular applications 
 
•  Future work: 

–  Support advanced features on GPU: exceptions, memory 
allocation, locks, etc. 

–  Support combined CPU+GPU heterogeneous execution 
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Questions? 
 
Please try it out: 
https://github.com/IntelLabs/iHRC/ 
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Cloth Physics demo using Concord: 
 
 
 
 
 
 


