
Heterogeneous

Machines

 Challenges for the

Compiler Community

Norm Rubin

NVIDIA

Northeastern University

CGO keynote 2014

How are these three conferences

different?

Differences in titles 2012,2013, bigger font means greater delta,

Angle determined by the ratio

cgo

hpca

ppopp

algorithm
parallel

gpu

cache
architecture

dynamic

a
u
to

m
a
ti
c

profilingdram

access

multicores

efficient

analysis

array

fa
s
t

energy-efficient

power

memory

generation

data-parallel

instrumentation
parallelization

runtime

concurrent

deterministic

scalable

data

simd

-performance

performance

fr
a

m
e

w
o
rk

global

locks

streaming
synthesis

verification work-stealing

(csdl

prediction

2012,2013 word differences in titles, size = max deviation of word rate from average

 angle determined by document with maximum usage

CGO keynote 2014

What is a heterogeneous machine?

some history

Moore’s law is the observation that over the history

of computing hardware the number of transistors on

integrated circuits doubles approximately every two

years - Gordon Moore, 1965 “Electronic News” article

Ice-age to 2005 single core world

Use extra transistors for more performance

70, 80s one big feature at a time (floating point on die, oo

exec, pipelines)

90-2000’s multiple smaller features at time

Cores get more and more complex

Developers are happy – just recompile and everything

goes faster

Complier writers are happy- understand the machine

CGO keynote 2014

2005- multiple identical cores

Multi-cores

All the cores are the same,

Performance through replication

One unified memory

Software responds through libraries and a few parallel

applications (Parallel make)

For a small number of complex cores, there is a simple

interconnect, and we can build 2 digits of cores

Questionable if this can scale – within a power budget

CGO keynote 2014

2009- heterogeneous cores

Power becomes an issue

Within desktop and mobile form factors, power and

heat, and height are limited

Either big/little cores – same isa but still different,

Or different designs - latency and throughput cores

Specialized cores for specific tasks

This is a permanent change –

Specialized cores are power efficient

Software does not know how to split work

Up to the user, new languages DirectX, CUDA, OpenCL

CGO keynote 2014

Heterogeneous cores and memory

Memory might be unified

APU/ TEGRA

Or memory might be split into memory per core type

GPU discrete cards

Software – let the user code all data motion, figure

out what computations on what core

As parallelism goes up, the memory interconnect

gets more complex so layout matters, but it is a up

to the developer

CGO keynote 2014

Tegra K1

Battery
Saver
Core

2x
ISP

ARM7

2160p30
VIDEO
ENCOD

ER

2160p30
VIDEO
DECOD

ER

AUDIO

USB
3.0

SECUR
ITY

ENGIN
E

HDMI
Dual

DISPLA
Y

UART

MIPI
DSI/CSI

/
HSI

E,MMC
4.5

DDR3L
LPDDR

2
LPDDR

3

SPI
SDIO

I2S
I2C

Kepler

GPU
Kepler GPU (192 CUDA Cores)

Open GL 4.4, OpenGL ES3.0, DX11,

CUDA 6

CPU
Quad Core Cortex A15 “r3”

With 5th Battery-Saver Core; 2MB L2

cache

CAMERA
Dual High Performance ISP

1.2 Gigapixel throughput, 100MP sensor

POWER
Lower Power

28HPM, Battery Saver Core

DISPLAY
4K panel, 4K HDMI

DSI, eDP, LVDS, High Speed HDMI 1.4a

CGO keynote 2014

On a single Chip there are limits

Dark silicon - more transistors per chip, but you

cannot turn them all on at once within stock form

factors.

From a compiler point of view – no simple cost

model

Power sloshing – There is enough power for one

class of cores to run at speed but all the others

have to slow down

CGO keynote 2014

192
Cores

Mobil
e

Keple
r

Tesla

Quadro

GeForce

Can we generate cores that scales?

CGO keynote 2014

What do these machine designs

mean?

The question became, what can we do for the poor

programmer now? You see programming and

debugging were the largest parts of the computer

budget, and it was easy to see that, with machines

like the 704 getting faster and cheaper, the situation

was going to get far worse.

John Backus

Source: www-03.ibm.com/ibm/history/exhibits/builders/builders_backus3.html

CGO keynote 2014

2010 - elastic cloud cores

The cost model changes

Hardware as a service

Lots of cores but they come and go

Memory is distributed

Much more parallelism

Software – map reduce/ hadoop, compilers do not

understand what is happening

Can we minimize cost for a solution, rather

than wall clock time?

CGO keynote 2014

Challenge

Remove hand coded data motion

Remove hand coded core assignments

Compiler cost models

How do existing mainstream languages change?

CGO keynote 2014

isa

There is a strong pressure to provide an alternative

to ISA

Ship in Byte-code, finalize to the native instruction set

Once byte-code starts being common, there is

performance pressure to stop using ISA at all

As Bytes code becomes common there is

commercial pressure to go to one byte-code

CGO keynote 2014

observations

Common wisdom: ByteCode is slow

But really its faster than native code

Because it can correct hardware errors, and speeds up

hardware release dates

Challenge: one ir to rule them all?

Ptx good for NVIDIA

HSAIL – one step toward a general ir

Can you design a single IR that works over a wide range of

parallel devices?

Can you design an IR that lets the first part, pass analysis

information efficiently?

CGO keynote 2014

Programming language changes

Managed languages – bytecode – are a better fit for

multi-isa machines.

All mainstream programming languages need to

change to address parallel programming

Adding parallelism is a big language change-

Compare this to object oriented programming

C managed to stay mainstream without objects

CGO keynote 2014

Google trends

date

ja
v
a
 +

 j
a
v
a
s
c
ri
p
t

+
 c

p
lu

s
p
lu

s
 +

 c
u
d
a
 +

 o
p
e
n
c
l

0

10

20

30

40

2010 2011 2012 2013 2014

Java
JavaScript
C++
Cuda
OpenCL

CGO keynote 2014

Does performance matter

Loading a web page –

Download, compile, run

Performance includes compile time, and source size

Shopzilla: page load 6 sec to 1.2 sec, -> 12% revenue

Amazon: every 100ms improvement -> 1% revenue

Yahoo: every 400ms improvement -> 9% more traffic

Mozilla: removed 2 sec from load -> 60million downloads

Source: www.strangeloopnetworks.com/assts/images/infographic2.jpg

http://www.strangeloopnetworks.com/assts/images/infographic2.jpg
http://www.strangeloopnetworks.com/assts/images/infographic2.jpg

CGO keynote 2014

Meaning of Performance

JavaScript (fast compiler -> ubiquity)

Web - Netscape, ie, firefox, safari, chrome

V8 compiler generates fast code

Unity - game engine in JS

Node.js - server side JS

node copter – hardware JS

Phone Gap - mobile JS

Compilers for js have improved performance 30 times in

four years – actual success!

CGO keynote 2014

TEGRA K1 FOR ADAS

Optical Flow Histogram Feature
Detection

Pedestrian Detection

Blind Spot Monitoring

Lane Departure

Warning

Park assist

Collision Avoidance

Traffic Sign Recognition

Adaptive Cruise Control

Driver Monitoring

CGO keynote 2014

Performance Improvements (SfM)

Initial CUDA port : 25 ms / frame

Current Perf. : 17 ms / frame

NVIDIA Projection : 10–12 ms/ frame

0

10

20

30

40

50

60

Structure From Motion
(Milliseconds)

FPGA

RANSAC

Optical
Flow
Pyramid

CGO keynote 2014

CGO keynote 2014

CGO keynote 2014

THE BEST IN

VISUAL

EFFECTS

2013 marked the

fourth year in a row

when all films

nominated for the

Best Visual Effects

Academy Award

were created on

Quadro GPUs,

including Oscar-

winner

Life of Pi.

CGO keynote 2014

What we would like

One source program

Runs on tablet

Runs faster when connected to a network, uses

remote cores (of many types)

Runs bigger data on the cloud

Does not require developers to decide what

computation runs where

Does not require massive restructuring every year

CGO keynote 2014

What we have

One program for a machine with a gpu and a cpu

Another program for cloud, and one for cpu

One of the things that is interesting about platforms today vs. the traditional

desktop is that these cloud services are becoming increasingly central to the

core platform experience. This presents a special challenge to an open-source

platform, which can’t really provide such cloud services as part of the standard

platform implementation. In Android our solution to this is to design the platform

so that cloud services can plug-in and integrated with it in various ways.

Source: http://arstechnica.com/information-technology/2014/02/neither-microsoft-nokia-nor-anyone-else-should-fork-

android-its-unforkable/?comments=1&start=80

CGO keynote 2014

Changes in the compiler landscape

Compilers used to be standalone tools

Compile and then ship

But today compilers are moving into run-times

So ship then compile

Hotspot, v8, gpu compilers

Byte codes and performance

Compile time counts

Finalizers do not have flags!

Challenge: no user flags or knobs

CGO keynote 2014

Current GPU compiler model

source

byteCode

split

Gpu -----------------

CPU --------

Ahead of time
At run time

Finalization

Lots of time/ do not know the device No time, know the device

CGO keynote 2014

Compilers over time
gcc spec 2000 int changes 3.2.3-> 4.50

higher is better, to the right is worse

percent change in compile time

P
e
rc

e
n
t

c
h
a
n
g
e
 i
n
 p

e
rf

o
rm

a
n
c
e

-2

0

2

4

0 10 20 30 40 50

o2

0 10 20 30 40 50

o3

Core Gcc lines of code over time

date

lin
e
s

0

2000000

4000000

6000000

8000000

10000000

1990 1995 2000 2005 2010 2015

CGO keynote 2014

Compilers over time

Gcc looks good

5% speedup (spec 2000 might be mined out)

50% longer compile time (ignoring adaptive ops)

300% more code (in the core)

More and more optimizations

Some amount of skipping unproductive optimizations

Challenge – speed improvements do not keep pace

with compile time

Challenge – Can we build reliable software at 1Meg-

13Meg lines?

CGO keynote 2014

Finalizer as hardware

For standalone compilers, developers can pick and

chose

For compilers in the chipset/driver/browser/os users

have only one option

Update the finalizer – does not happen

Move program to a new machine – new finalizer

Challenge: Can we write reliable compilers?

Can we do that and keep optimization

CGO keynote 2014

Multiple compilers

Do multiple compilers cooperate or counteract?

Compiler unrolls a loop, finalization rolls it back up.

GPU finalization uses pattern matchers to undo a lot

of front compiler work

If we move code from one compiler to the other at

runtime- will the program get the same answer?

What about ignoring floating point and rounding?

What if the program is not correct.

CGO keynote 2014

Incorrect programs

char* buf; unsigned int len;

If (buf + len < buf) { // wrong way to check overflow

 report error;

}

Itm = p->field;

If (!p) { // wrong way to check for null ptr

Report error

}

CGO keynote 2014

Gpu example

Spec says threads cannot communicate without

synchronizing result is “undefined”

but real hardware has a magic number – the warp

size (might be 32). Threads in a warp can

communicate without synchronizing

Synch is expensive (maybe) so developers like to

leave it out

A[tid] = a[tid +k] // a shared variable

Only way that this avoids communication is for k==0

CGO keynote 2014

What does undefined mean

Compilers writers – undefined means anything can

happen

Developers- behavior is a secret

Rule of three – try the program on three compilers, if

it gets the same answer, the code is legal

Rule of one – try the program on one compiler, if it

gets the answer you want, the code is legal

CGO keynote 2014

When does undefined matter

 (defective wrapping check)

compiler Ptr Integer unsigned

If (p + 100 < p)

Gcc-2.95.3 - - 01

Gcc-3.4.6 02 01

Gcc-4.2.1 o0 - 02

Gcc-4.8.1 o2 02 02

Icc-14.0.0 - 02 01

Msvc-11.0 - 01 -

Armcc-5.03 - - o2

Source Xi Wang et.al. SOSP 13, 2013

CGO keynote 2014

Correctness

Some developers think invalid programs form a

hierarchy-

Benign errors, catastrophic errors, warnings?

 = p->x

If (p == NULL) { report error }

C spec says dereference of null ptr is undefined

Since there is a dereference, the compiler can assume p is

not null and remove the if.

Early versions of GCC did not notice, but one day GCC did

notice

CGO keynote 2014

Cert vulnerability note vu 162289

Avoid affected compiler implementations

Application developers and vendors of large codebases

that cannot be audited for use of the defective wrapping

checks are urged to avoid using compiler

implementations that perform the offending optimization.

Vendors and developers should carefully evaluate the

conditions under which their compiler may perform the

offending optimization. In some cases, downgrading the

version of the compiler in use or sticking with versions of

the compiler that do not perform the offending

optimization may mitigate resulting vulnerabilities in

applications.

CGO keynote 2014

How compiler writers view this

On two occasions I have been asked ‘Pray, Mr.

Babbage, if you put into the machine the wrong

figures, will the right answers come out?’ I am not able

rightly to apprehend the kind of confusion of ideas that

could provoke such a question

Charles Babbage

Source: www.brainyquote.com/quotes/quthors/c/charles_babbage.html

CGO keynote 2014

The gcc response

Added a new flag

Which turns off the optimization

Sometimes (sadly there was a bug in the patch)

Non-standard dialect of C

New flag only works for next version of the compiler

Will not retrofit the change into the past

Add flag to old versions of the compiler

Get all fielded copies to change

CGO keynote 2014

Even compiler writers make this

mistake

Firefox

Js - Allocate an array, set the length to something big

Do a reduction using a user supplied function on the array

from the right

Var a, b,c,d = -6.828527034422786e-229;

// string of x86 noops

Length is unsigned, reduceRight walks the array using

signed numbers, did the wrong check for out of bounds,

makes a call to a random point, sometimes it lands in the

constant.

CGO keynote 2014

Challenge of incorrect programs

Can we detect these without false positives

Can we define languages where “undefined” is

limited –

Java tried this (no race condition can turn into a security

hole) but that effort ran into trouble

CGO keynote 2014

Two compilers in the path

Open up a new way to look at

optimization

Split compilation

The first compiler has lots of time, but no ideas about the

target machine

The second compiler has no time but lots of ideas about

the target machine

Split the optimization over both compilers

First compiler does an optimization, the second

pattern matches the ir and undoes the optimization

and then does it itself

CGO keynote 2014

Split compilation

SSE – lots of flavors – several prototype compilers

that recognize vector opportunities in the first

compiler and then pick the specific vectors ops in

the second

Why is hadoop written in Java?

Compile to java bytecode

Let hotspot compile to isa

Hotspot looks across libraries, static compilers do not

How to annotate ir?

CGO keynote 2014

Using an ir to transfer info

Register allocation

 what can a compiler do for register allocation if it

has lots of time but no knowledge of the number of

registers?, and instructions might be re-ordered

Computing spill costs is expensive

CGO keynote 2014

“likely to spill” in ir

Some compilers will not generate it, some finalizers

will ignore it.

Time in a register allocator is related to the number

of simultaneously live ranges.

Goal – finalizer has to be fast, so reduce the number

of live ranges but not so much that it needs to spill a

lot

If it does spill make that fast

CGO keynote 2014

Statistical views

Observation: a live range that spills given N registers

are statistically likely to spill given N+1 registers

So the compiler could assign a spill probability to each

live range – Diouf, et.al. “Split Register Allocation”, HiPEAC'10

Some evidence that “likely to spill” is still true if the

code is rescheduled

The first compiler could identify “likely to spill” live

ranges, the second compiler could use that info or not

CGO keynote 2014

HSAIL and spilling

How does the ir represent likely to spill, and allow for

multiple finializers

HSAIL:

Small fixed number of registers and infinite set of spill

slots, split slots are a mix of memory and register

Spill slots are a special memory space so they never

interact with normal loads and stores

The spill slots are either less important registers or they

are memory. Different finalizers can pick and chose

CGO keynote 2014

What about all the other

optimizations

Challenge: How do we split info so that time

consuming parts are done ahead of time?

CGO keynote 2014

The challenges:
new notions of performance

mainstream languages change

cost models

performance portability

single ir to rule them all

compiler reliability

incorrect programs

No user input or flags to the compiler

split compilation

interaction of optimizations

speed improvements do not keep pace with compile

time

Remove hand coded ...

CGO keynote 2014

Questions?

