Qualcomm
Research

Silicon Valley

Are scripting languages read%‘or mob”

computing? P

& -

Calin Cascaval, cascaval@gti.qualcomm.com M
Feb. 18, 2014

QUALCO/WW

Outline

* Mobile computing -- what is the fuss?
* Developers and their tools -- who is writing code?

* Browsers and JavaScript -- the push toward platform independence

Qualcomm Research

Mobile Market

BROUGHT TO YOU BY: m Illummas

MOBILE DEVICE USAGE IS EXPLODING New age of mobile World

rreeereeee eI RRING
ititiiiii@iitiiitie

trereeeeeT PTTRTODIND

MOBILE CONNECTED

DEVICES IN THE WORLD WORLD POPULATION

(est. 715 bn)

Qualcomm Research

Mobile Computing Landscape

What’s in a smartphone?

o i

Qualcomm Research

Anatomy of a Mobile SoC: Qualcomm Snapdragon 800

Ultra HD Capture
and Playback

DTS-HD and Dolby
Digital Plus audio

Expanded Gestures

Krait 400 CPU

features 28nm HPm process
technology

superior 2GHz+ performance

21MP with dual ISP

Support for up
to 2560x2048 display

Miracast 1080p
HD support

Adreno 330 for
advanced graphics

Hexagon QDSP6
for ultra low power
applications and custom pro-
grammability

|Zat GNSS with
support for three
GPS constellations

Integrated 802.11ac,' USB 3.0and
BT 4.0 offers broad array
of high speed connectivity

Source: http://www.qualcomm.com/snapdragon/processors/800

Mobile Constrains

e e P

< 4 B 11:00 AM

Energy

Thermal

Mobile Computing Software Stack

N

Performance: Domain

Specific Libraries

- Exploit domain knowledge to
Web provide composable libraries

A Native Apps for all programmers
Pps - Hide hardware complexity

“ =,
L . . »

JavaScript frameworks

Domain Specific

Browser Engine . .
8 Parallel Libraries

Programmability: MARE B

- Parallel, heterogeneous programming

Portability: Parallel Browser
- Use of concurrency to optimize execution

of Web Apps - Power and performance optimizations
- Muscaliet JavaScript Engine
\http://github.com/mcjs/mcjs.git) \http://developer.quaIcomm.com/mare)

8 _

Scripting languages?

JavaScript!

Qualcomm Research

JavaScript: the language of the Web

I
e =

Qualcomm Research

JavaScript: Language features

* Dynamic types and operator overloads

— Type of variables can change

— Operators change behavior based on operand types
* E.g. “+” changes to string concatenation either operand is string
e E.g. “++” applies a type conversion if operand is not number
=> “++” is not the same as “+=1"
* E.g.“<, > >=.." apply type conversion to right operand based on the type of left

operand
=>“a < b” is not equivalent to “b > a”

var x = 0;
for (var i = 0; i < 5; ++i) {

if (x > 5)

X +=".";

X += 1i;
}
prlnt(+ " i " 4+ typeof(x)); »6.4 1is string
print(x + 1); »6.41
print (6.4 <= x); »true
print(x >= "6.4 "); »false
print (++x + " 1s " + typeof (X)) ;e »7.4 is number
print(x + 1); *8.4

11 "~ Qualcomm Research

12

JavaScript: Objects

e JavaScript objects are nested hash tables (a.k.a prototype chain)

— Semantically 0.x = o[“X"]

var ol={};

function F1(){ this.z = ‘a’; }

Fl.prototype = o0l;

var 02 = new F1(); ol (z/'a’ ol (z/a’) ol (z/a’)
function F2 () {} (x,10) (x,10)
F2.prototype = 02; [
var o3 = new F2(); 02 02 02 (x,30)
prlnt (O3.X) g e undefined __\\\§—_03 ”’/03 . OSIﬁ
ol.x = 10; 4 . -~
prlnt(o3.x); »1Qe———-————— T T

02.x += 20; T .

DLANE (03.K) ; s b 30 e Status after property assignments

13

JavaScript: Language features (cont.)

The “arguments” keyword allows alternative access to arguments of a
function and its callers

Function scope: is the only scope in JavaScript. All declarations (even
within condition blocks) are moved to the top

Arrays are special hash tables with different rules for property attributes
and prototype chain

The undefined and null values are the default in various seeming similar
situations. The values behave differently in some particular situations

JavaScript Standardization

o

<

ECMAScript vl \

Brendan Eich: Mocha,
LiveScript
Initial version,

/ ECMAScript v5 \

e Strict mode

* Object reflection
and properties

* Getters and setters

supported in Netscape

IE (JScript) /

14

* JSON support /

/ ECMAScript v3 \

* Regular expressions

e try/catch

e strings and number
formating

4

a

ECMAScript v7 \

Promises/concurrency
Math and numbers
Guards and trademarks
Value types

Operator overloading
and traits

Y

ECMAScript vb \
Classes and modules
Iterators

Generators and
generator expressions

>

1995-1997

1999

2009

2013+

Historical JavaScript Performance

V8 Benchmark Score -- Higher is better

==Chrome/V8 <=#Firefox -*~IE/Chakra

2005 2006 2007 2008 2009 2010 2011 2012 2013

Sources: https://confluence.ontotext.com/display/ResearchSpace/JavaScript+Frameworks
http://www.zdnet.com/the-big-browser-benchmark-january-2013-edition-7000009776/

Qualcomm Research

15

16

JavaScript Usage

jQuery

* What the DOM API
should have been

* DOM navigation,
traversal, animations

* Facilitates plugins on
top of JavaScript

Node.js

* Server-side JavaScript for
networking apps

* Event-driven, non-
blocking infrastructure to
script highly concurrent
programs.

* Built-in support network
protocols: TCP, DNS, HTTP

GWT

Java to JavaScript
In-browser debugging
and optimizations

Emscripten

C++ to JavaScript
“Big apps” running in
the browser
Generates asm.js

asm.js

Restricted JavaScript
that can be used as a
target by compilers

TypeScript

Superset of JavaScript
with type annotations
and objects

CoffeeScript

Restricted JavaScript
Extended with some
nice features inspired
by Haskell and Python

Muscaliet JavaScript Engine

18

Qualcomm Zoomm Browser: Pervasive Concurrency

User Interface Events

Per-Page DOM Engine

HTML Parsing

CSS Parsing
Styling

Layout Tree

Per-Page JavaScript Engine Rendering Engine

Cascaval et al.: Zoomm: a parallel web browser engine for multicore mobile devices, PPoPP 2013

MCIJS: First implementation

]st Execution

CRalNT |
. 41 IRAEE JITted code
LCompller Inference

MCIS Engine Architecture

Web Runtime JavaScript M
(Browser DOM Bindings, HTML5 APIs, JS
Events, Timers, etc.) _

JavaScript Virtual Machine

I
CILJIT P
JavaScript Hot func
Optimizations CIL & hints 1’

Interpreter (CLR: Mono/.NET)

Code Gen, Garbage Collection
Dynamic Runtime
Basic support needed for dynamic languages
(Dynamic Objects, Types, Hidden classes)

MCIJS: Parallel JIT

B r1A1P2 A2 P3[A3) E1
o1
02 C2
Speculated II @
functions @
+
4'| Parse H Analyze }—ﬂ Spawn CodeGen
N All done? * |
\Lookup from code cache\
CodeGen

Spalwn FﬂSpeciaIize H Optimize |—' CodeGen

Use partially matched\

v Wait for CG

0’2
C3
C’'1-opt

— Execute *

21

E2

E3 E’z

C’'2-opt
0’3 C’3-opt

F1(x) {

loop {
F2 (x+10) ;
F3 (\\MC//) ;
}

22

MCIJS Type Inference Engine

Simple worklist based algorithm, using a type lattice

Infers the type of local symbols

Makes most of the internal operations run faster
e eg.a=f+b

O String
O Int
() Unknown

Qualcomm Research

MCIJS: Parallel Compilation

250.0
Lower is better

200.0

[EEN
U1
=
o

[EEY
o
o
o

Compile time (ms)

M Serial M Parallel

23

24

Lessons

What worked

What did not

A layered architecture that allows for
quick development and design
iteration

Type inference and language level
optimizations really pay off

Parallelism pays off for long
compilation times

Proper browser integration is
essential to reduce overhead

Full compilation works well for heavy
benchmarks, but it is difficult to
amortize

Concurrency opportunities and
speculation require highly tuned
heuristics, different across workloads

MCIJS: Reducing compilation overhead

st
Exeélution /Jixejl:itjhjmnﬂ nth Execution
CI;Lr|]I1I Jillzr (JITted code
Simple Prier. {
JT
Type

Inference

25

26

Website performance

u

SN

w

N

Speedup relative to Rhino Interpreter
[EY

o
|

BBC Yahoo Google Wikipedia Mozilla Amazon

‘ M Rhino_C+ ® MCIS_J+ " V8 ‘

Qualcomm Research

27

MCJS: How about an interpreter?

1St 2nd 3rd
Execution Execution Execution
Simple JIT W
Interpreter Interpreter J

nth Execution

(JITted code

Full JIT
compiler

Type Inference

Qualcomm Research

28

Website performance

6
S
3
) 5
£
o
S
]
-
£
o
£
< 4
o
o
=]
)
2
=]
£
e 3
o
S
S
L]
]
o
)

1§l

BBC Yahoo Google Wikipedia Mozilla Amazon

‘ B Rhino_C+ " MCIS_| B MCIS_1) = MCIS_J+ "8 ‘

Qualcomm Research

29

Lessons

What worked

What did not

A layered architecture that allows
for quick development and design
iteration

Fast compilation/interpretation is
essential since there is almost no
reuse for code in web pages

Benchmarks and web apps require a
full compiler

Interaction with the native JIT has

additional overheads

Language “features” prevent many

optimizations

Qualcomm Research

Challenges in type inferring JS code

var bar = 0 Local symbols are blue
Global symbols are red
function foo()
{ TI Result

var a = 10; =========

var b = a + 30; a -> DValue
var ¢ = a * 15 + b; b -> DValue
a = bar + 2; C -> DValue
} bar -> DValue
foo()
bar = “str”
foo()

* Since bar is global symbol, there is no way we can infer its type.
— Without bar everything would have been type inferred

31

MCJS: How about a profiler?

1St 2nd 3rd
Execution Execution Execution

Specialized JIT
Interpreter

Interpreter +

nth Execution

(JITted code

|
J

Profiler

Full JIT
compiler

Qualcomm Research

32

JavaScript on web pages

* 1.5% of the profiled nodes showed dynamic nature

— Differs from previous published results because we profiled the nodes that
would help the TI.

* 16% of the executed functions have nodes with dynamic types

* Only 2.7% of the callsites were polymorphic (had multiple call sites)

Qualcomm Research

33

Type feedback driven type-inference

Reduce number of guards

Augmented type info

Leverage type inference analysis to
focus only on the dynamic variables

Arrays and strings are objects,
inferring the index allows direct
access

Profiler information on inferred
types is used to enhance compiler
type information: more optimized
static code

a=°+ b;

Assume b is int
and f is a global
symbol (DValue)

‘ ' . o -
ualcomm Research

Example for profile driven Tl

var bar = 0

function baz() { return 1; }
var obj = {1 : 1}

var arr = [1, “str”]

function foo()

{

var
var

Represents 1 guard
Total 6!

TI

Result

baz

arr

A2 2 2 2 2 2\%

DValue
Int32

DValue
DValue
DValue
DValue
DValue
DValue

New TI Result
a - Int32
b - Int32
C - Int32
d -2 Int32
bar - DValue
baz = DValue
obj > DValue
arr = DValue

Kedlaya et al., Improved Type Specialization for Dynamic Scripting Languages, DSL 2013

34

.rIIIIIIIIIII_

167

124 160

176

HEERRERENERRERRERR e nnnnnnnnn

-rlllllllllll-

o o o
M~ O LN

Q
o
c
©
&
| -
@)
4
| -
()
o
| -
()
O
o
(V)]
C
>
(V)

o o o o

(9] N i

(sewin) 49104da23u| oulyy 01 dAne|a4 dnpaads

EMCIS_J+ HV8

B MCIS_J

B Rhino C+ M |ronJS MW MCIS |

e
o
W
o)
0
o)

oC
S
=
)

1)
©
=]

C

35

Lessons

What worked What did not

A layered architecture that However, compiler support can take it
allows for quick development MY up o apoint

and design iteration For more we need a system level

approach, combining programmer
Exploitation of program structure knowledge, software architecture,
and language design

There are many more compiler tricks
that we've implemented. And the right language for the task

See our upcoming VEE 2014 papers.
The code is available at: http://github.com/mcjs/mcjs.git

36

Are scripting languages ready for
mobile computing?

Qualcomm Research

38

The Mobile Software Stack

Web

o Native Apps

JavaScript frameworks

Domain Specific

Browser Engine . .
8 Parallel Libraries

39

The BIG Challenge

Portability and ease of development
VS.

Power and performance programming

Qualcomm Research

40

Acknowledgments

Manticore team

— Behnam Robatmili, Pablo Montesinos Ortego, Michael Weber, Dario
Suarez-Gracia, Jimi Xenidis, Han Zhao, Weiwei Chen, Kishore

Puskuri, Freark Van Der Berg, Ravi Hastantram

Interns

— Madhukar Kedlaya, Christian Delozier, Christoph Kershbaumer,
Adrian Sampson, Andrey Ermolinski

Former members

— Mehrdad Reshadi, Seth Fowler, Alex Shye, Wayne Piekarski, Vrajesh
Bhavsar, Babak Salamat

Qualcomm Research Silicon Valley

41

Legal Disclaimers

All opinions expressed in this presentation are mine and may not necessarily
reflect those of my employer.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated,
registered in the United States and other countries. All Qualcomm
Incorporated trademarks are used with permission.

Other products and brand names may be trademarks or registered
trademarks of their respective owners.

Qualcomm Research

Qualcomm Research

Qualcomm Multicore Asynchronous Runtime Environment

44

MARE is a programming model and a runtime system for heterogeneous

mobile programming

Efficient

Simple Productive
Tasks are a natural way Focus on application
to express parallelism. logic, not on thread
Familiar C++ management

programming.

Task dependences
allow the MARE
runtime to perform
more intelligent
scheduling decisions

e User level, native C++ library, supported on Android, Linux, Mac OS X,

and Windows

* Optimized for the Qualcomm Snapdragon platform
* Available at: http://developer.qualcomm.com/mare

