
Just-In-Time
Software Pipelining

Hongbo Rong Hyunchul Park

Youfeng Wu Cheng Wang

Programming Systems Lab

Intel Labs, Santa Clara

What is software pipelining?

2

for (i = 0; i<N; i++){
a: x = y + 1
b: y = A[i] + x
c: B[i+2] = B[i]*x
d: A[i+2] = B[i+2]

}

A loop optimization exposing instruction-level
parallelism (ILP)

What is software pipelining?

2

for (i = 0; i<N; i++){
a: x = y + 1
b: y = A[i] + x
c: B[i+2] = B[i]*x
d: A[i+2] = B[i+2]

}

a

c b

d
Local dependence

Loop-carried dependence

<2>

<1>

<1>

A loop optimization exposing instruction-level
parallelism (ILP)

3

a

c b

d
<2>

<1>

<1>

3

Iteration0 1 2 3

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d

0 1 2 3

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d
a
b c

d

0 1 2 3

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d
a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d
a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

a

c b

d
<2>

<1>

<1>

3

Iteration

a
b c

d
a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

• Different iterations work
on different stages in
parallel

Kernel
2 stages

3

Iteration

a
b c

d
a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

• Different iterations work
on different stages in
parallel

Kernel
2 stages

3

Iteration

a
b c

d
a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

• Different iterations work
on different stages in
parallel

Kernel
2 stages

3

Iteration

a
b c

d
a
b c

d
a
b c

d
a
b c

d

0 1 2 3

Initiation interval(II)=2

• Different iterations work
on different stages in
parallel

• II is the performance
indicator

Kernel
2 stages

Software pipelining has been static

• Extensively studied in 3 decades, and efficient for
wide-issue architectures
– VLIW [Lam 1988]

– superscalar [Ruttenberg et al. 1996]

4

Software pipelining has been static

• Extensively studied in 3 decades, and efficient for
wide-issue architectures
– VLIW [Lam 1988]

– superscalar [Ruttenberg et al. 1996]

• It is seen only in static compilers

4

Software pipelining has been static

• Extensively studied in 3 decades, and efficient for
wide-issue architectures
– VLIW [Lam 1988]

– superscalar [Ruttenberg et al. 1996]

• It is seen only in static compilers

• Most works aim to minimize II but not compile
overhead

4

It is time now to extend software

pipelining to dynamic compilers!

5

It is time now to extend software

pipelining to dynamic compilers!

• Dynamic languages are increasingly popular
– JavaScript and PhP 88.9% and 81.5% in client and server
websites (W3Techs)

5

It is time now to extend software

pipelining to dynamic compilers!

• Dynamic languages are increasingly popular
– JavaScript and PhP 88.9% and 81.5% in client and server
websites (W3Techs)

• Huge amount of legacy code
– Small optimization scope: a loop iteration

– Software pipelining enlarges the scope to many iterations

5

It is time now to extend software

pipelining to dynamic compilers!

• Dynamic languages are increasingly popular
– JavaScript and PhP 88.9% and 81.5% in client and server
websites (W3Techs)

• Huge amount of legacy code
– Small optimization scope: a loop iteration

– Software pipelining enlarges the scope to many iterations

• Minimizing compile overhead must be the 1st

objective
– Only simple/fast algorithms can be used

5

It is time now to extend software

pipelining to dynamic compilers!

• Dynamic languages are increasingly popular
– JavaScript and PhP 88.9% and 81.5% in client and server
websites (W3Techs)

• Huge amount of legacy code
– Small optimization scope: a loop iteration

– Software pipelining enlarges the scope to many iterations

• Minimizing compile overhead must be the 1st

objective
– Only simple/fast algorithms can be used

– linear-time algorithms are preferred

5

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

6

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

6

for (i = 0; i<N; i++){
a
b
c
d

}

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

6

for (i = 0; i<N; i++){
a
b
c
d

}

Original
optimizat
ion scope

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

6

for (i = 0; i<N; i++){
a
b
c
d

}

Original
optimizat
ion scope

for (j = 0; j<N; j+=M){
for (i = j; i<j+M; i++){

a
b
c
d

}
}

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

6

for (i = 0; i<N; i++){
a
b
c
d

}

Original
optimizat
ion scope

for (j = 0; j<N; j+=M){
for (i = j; i<j+M; i++){

a
b
c
d

}
}

Atomic
region

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

• Costly rollback
– Software: Light-weight checkpointing

6

for (i = 0; i<N; i++){
a
b
c
d

}

Original
optimizat
ion scope

for (j = 0; j<N; j+=M){
for (i = j; i<j+M; i++){

a
b
c
d

}
}

Atomic
region

Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

• Costly rollback
– Software: Light-weight checkpointing

• Scheduling is expensive

6

for (i = 0; i<N; i++){
a
b
c
d

}

Original
optimizat
ion scope

for (j = 0; j<N; j+=M){
for (i = j; i<j+M; i++){

a
b
c
d

}
}

Atomic
region

7

Framework
(on Transmeta CMS)

7

x86 binary
Framework

(on Transmeta CMS)

7

x86 binary

Interpreter & profiler

Framework
(on Transmeta CMS)

7

Hot region optimizations

x86 binary

Interpreter & profiler

Framework
(on Transmeta CMS)

7

Hot region optimizations

Acyclic scheduler

x86 binary

Interpreter & profiler

Framework
(on Transmeta CMS)

7

Hot region optimizations

Acyclic scheduler

Assembler

x86 binary

Interpreter & profiler

Framework
(on Transmeta CMS)

7

Hot region optimizations

Acyclic scheduler

Assembler

x86 binary

Interpreter & profiler

Code cache

Framework
(on Transmeta CMS)

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

x86 binary

Interpreter & profiler

Code cache

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Loop selection

Acyclic scheduler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Initialization

Loop selection

Acyclic scheduler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Scheduling

Initialization

Loop selection

Acyclic scheduler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Scheduling

Rotating alias reg alloc

Initialization

Loop selection

Acyclic scheduler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Scheduling

Rotating alias reg alloc

Code generation

Initialization

Loop selection

Acyclic scheduler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Scheduling

Rotating alias reg alloc

Code generation

Initialization

Loop selection

Acyclic scheduler

8

Framework
(on Transmeta CMS)

Hot region optimizations

Acyclic scheduler

Assembler

Scheduling

Rotating alias reg alloc

Code generation

Initialization

Loop selection

Acyclic scheduler

Rotating alias register fileAtomic region

Scheduling is expensive

• NP-complete problem to find an
optimal schedule [Colland et al. 1996]

9

Scheduling is expensive

• NP-complete problem to find an
optimal schedule [Colland et al. 1996]

• O(V3) at least, exponential at worst
[Rau et al. 1992]
– V: number of operations

9

Scheduling is expensive

• NP-complete problem to find an
optimal schedule [Colland et al. 1996]

• O(V3) at least, exponential at worst
[Rau et al. 1992]
– V: number of operations

• Can we linearize software pipelining?

9

Keep scheduling time under control

10

Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity

10

Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity

– For iterative sub-algorithms, have a threshold: the
maximum #iterations allowed

10

Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity

– For iterative sub-algorithms, have a threshold: the
maximum #iterations allowed

• The smaller the threshold, the less the compile overhead
• Once exceeded, abort software pipelining

10

Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity

– For iterative sub-algorithms, have a threshold: the
maximum #iterations allowed

• The smaller the threshold, the less the compile overhead
• Once exceeded, abort software pipelining
• Key question: How small can the threshold be?

10

Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity

– For iterative sub-algorithms, have a threshold: the
maximum #iterations allowed

• The smaller the threshold, the less the compile overhead
• Once exceeded, abort software pipelining
• Key question: How small can the threshold be?

• Find a good enough schedule
– No backtracking
– Priority function: approximate and never update
– Separate dependence and resource constraints
– Separate local and loop-carried dependences

10

Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity

– For iterative sub-algorithms, have a threshold: the
maximum #iterations allowed

• The smaller the threshold, the less the compile overhead
• Once exceeded, abort software pipelining
• Key question: How small can the threshold be?

• Find a good enough schedule
– No backtracking
– Priority function: approximate and never update
– Separate dependence and resource constraints
– Separate local and loop-carried dependences

• Iteratively improve a schedule

10

Just-In-Time Software Pipelining

11

Just-In-Time Software Pipelining
• Quickly creates an initial
schedule to start with

11

Prepartition

H, B

Just-In-Time Software Pipelining
• Quickly creates an initial
schedule to start with

11

Prepartition

Local scheduling
• Handles local
dependences and
resources

H, B

Just-In-Time Software Pipelining
• Quickly creates an initial
schedule to start with

11

Prepartition

Local scheduling

Kernel expansion

• Handles local
dependences and
resources

• Adjusts the schedule for
loop-carried dependences

H, B

Just-In-Time Software Pipelining
• Quickly creates an initial
schedule to start with

11

Prepartition

Local scheduling

Kernel expansion

• Handles local
dependences and
resources

• Adjusts the schedule for
loop-carried dependences

H, B

Exit

Just-In-Time Software Pipelining
• Quickly creates an initial
schedule to start with

11

Prepartition

Local scheduling

Kernel expansion

Rotation

• Handles local
dependences and
resources

• Adjusts the schedule for
loop-carried dependences

• Iteratively improves the
schedule

≤3

H, B

Exit

Just-In-Time Software Pipelining
• Quickly creates an initial
schedule to start with

11

Prepartition

Local scheduling

Kernel expansion

Rotation

• Handles local
dependences and
resources

• Adjusts the schedule for
loop-carried dependences

• Iteratively improves the
schedule

• Time complexity: O(V+E)
– V: #operations E: #dependences

≤3

H, B

Exit

Illustration
12

Iteration0 1 2 3

Local dependences

Resources

Loop-carried dependences

PrepartitionPrepartitionPrepartitionPrepartition

Local scheduling

Kernel expansion

RotationExit

Illustration
12

abc

d

RecMII

Iteration0 1 2 3

Local dependences

Resources

Loop-carried dependences

PrepartitionPrepartitionPrepartitionPrepartition

Local scheduling

Kernel expansion

RotationExit

Illustration
12

Kernel

abc

d abc

d abc

d

RecMII

Iteration0 1 2 3

Local dependences

Resources

Loop-carried dependences
abc

d

PrepartitionPrepartitionPrepartitionPrepartition

Local scheduling

Kernel expansion

RotationExit

Calculating RecMII

 13

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Calculating RecMII

 13

Conventional

O(V3)

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Calculating RecMII

• Turn the problem into a Markov decision process
– 1st time Howard algorithm is applied to pipelining

 13

Conventional

O(V3)

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Calculating RecMII

• Turn the problem into a Markov decision process
– 1st time Howard algorithm is applied to pipelining

 13

Conventional

O(V3)

Howard policy
iteration algo.

O(exponential*E)

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Calculating RecMII

• Turn the problem into a Markov decision process
– 1st time Howard algorithm is applied to pipelining

• Linearize Howard with a small constant H
 13

Conventional

O(V3)

Linearized
Howard

O(E)

Howard policy
iteration algo.

O(exponential*E) H*

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Calculating RecMII

• Turn the problem into a Markov decision process
– 1st time Howard algorithm is applied to pipelining

• Linearize Howard with a small constant H
 13

Conventional

O(V3)

Linearized
Howard

O(E)

Howard policy
iteration algo.

O(exponential*E)

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Calculating RecMII

• Turn the problem into a Markov decision process
– 1st time Howard algorithm is applied to pipelining

• Linearize Howard with a small constant H
• A by-product: critical operations13

Conventional

O(V3)

Linearized
Howard

O(E)

Howard policy
iteration algo.

O(exponential*E)

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method

Divide operations into stages

14

Bellman-Ford

O(V*E)

Divide operations into stages

• Also an iterative sub-algorithm

14

Bellman-Ford

O(V*E)

Divide operations into stages

• Also an iterative sub-algorithm
• Linearize it with a constant B

14

Bellman-Ford

O(V*E)

Linearized
Bellman-Ford

O(E)B*

Divide operations into stages

• Also an iterative sub-algorithm

• Linearize it with a constant B

• Specific order in visiting edges
– Scan nodes in sequential order, and visit their incoming
edges

• Values are propagated along local edges in the 1st itr.

• Values are propagated along loop-carried edges in the 2nd itr.
14

Bellman-Ford

O(V*E)

Linearized
Bellman-Ford

O(E)B*

Divide operations into stages

• Also an iterative sub-algorithm

• Linearize it with a constant B

• Specific order in visiting edges
– Scan nodes in sequential order, and visit their incoming
edges

• Values are propagated along local edges in the 1st itr.

• Values are propagated along loop-carried edges in the 2nd itr.
14

Bellman-Ford

O(V*E)

Linearized
Bellman-Ford

O(E)

Illustration
15

Kernel

abc

d abc

d abc

d

RecMII

Iteration0 1 2 3

Local dependences

Resources

Loop-carried dependences
abc

d

PrepartitionPrepartitionPrepartitionPrepartition

Local scheduling

Kernel expansion

RotationExit

Illustration
15

Kernel

abc

d abc

d abc

d

RecMII

Iteration0 1 2 3

Local dependences

Resources

Loop-carried dependences
abc

d

PrepartitionPrepartitionPrepartitionPrepartition

Local scheduling

Kernel expansion

RotationExit

16

Kernel

a

d a

d a

d

IIbc

bc

bc

Iteration0 1 2 3

a

d

bc

Illustration (Cont.)

Local dependences

Resources

Loop-carried dependences

Prepartition

Local schedulingLocal schedulingLocal schedulingLocal scheduling

Kernel expansion

RotationExit

16

Kernel

a

d a

d a

d

II
b c

b c

b c

Iteration0 1 2 3

a

d
b c

Illustration (Cont.)

X
X

Local dependences

Resources

Loop-carried dependences

Prepartition

Local schedulingLocal schedulingLocal schedulingLocal scheduling

Kernel expansion

RotationExit

Local scheduling

• Any local scheduling algorithm can be used
– E.g. list scheduling

17

Local scheduling

• Any local scheduling algorithm can be used
– E.g. list scheduling

• Weakness:
– Loop-carried dependences may be violated

17

Local scheduling

• Any local scheduling algorithm can be used
– E.g. list scheduling

• Weakness:
– Loop-carried dependences may be violated

• To reduce the chance of violation:
– Before scheduling, priority function considers loop-
carried dependences in advance

– Prioritize critical operations

17

18

Kernel

a
b c

d
a
b c

d a
b c

d

II

Iteration0 1 2 3

a
b c

d
Illustration (Cont.)

X
X

Local dependences

Resources

Loop-carried dependences

Prepartition

Local schedulingLocal schedulingLocal schedulingLocal scheduling

Kernel expansion

RotationExit

18

Kernel

a
b c

d
a
b c

d a
b c

d

II

Iteration0 1 2 3

a
b c

d
Illustration (Cont.)

X
X

Local dependences

Resources

Loop-carried dependences

Prepartition

Local schedulingLocal schedulingLocal schedulingLocal scheduling

Kernel expansion

RotationExit

d

d

d

19

a
b c

a
b c

a
b c

II

Iteration0 1 2 3

a
b c

dIllustration (Cont.)

x
x

Local dependences

Resources

Loop-carried dependences

Prepartition

Local scheduling

Kernel expansionKernel expansionKernel expansionKernel expansion

RotationExit

d

d

d
19

Kernel

a
b c

a
b c

a
b c

II

Iteration0 1 2 3

a
b c

Illustration (Cont.)

x
x

Local dependences

Resources

Loop-carried dependencesx

Prepartition

Local scheduling

Kernel expansionKernel expansionKernel expansionKernel expansion

RotationExit

20

Iteration0 1 2 3

a
b c

a
b c

a
b c

a
b c

d

d

d Illustration (Cont.)

x
x

Local dependences

Resources

Loop-carried dependencesx

Prepartition

Local scheduling

Kernel expansion

RotationRotationRotationRotationExit

20

Kernel

Iteration0 1 2 3 a
b c

a
b c

a
b c

a
b c

d

d

d

d
Illustration (Cont.)

Local dependences

Resources

Loop-carried dependences

Prepartition

Local scheduling

Kernel expansion

RotationRotationRotationRotationExit

Experiments

• Transmeta CMS on SPEC2k traces

21

Experiments

• Transmeta CMS on SPEC2k traces

• Functional simulator to comprehensively

– Explore thresholds H and B
– Evaluate compile overhead and schedules’ quality

21

Experiments

• Transmeta CMS on SPEC2k traces

• Functional simulator to comprehensively

– Explore thresholds H and B
– Evaluate compile overhead and schedules’ quality

• Cycle-accurate simulator
– Simulates cache misses, latencies, …

– Initial performance study

21

Linearized Howard vs.

exponential backoff + binary

search [Rau et al. 1992]

22

Linearized Howard vs.

exponential backoff + binary

search [Rau et al. 1992]

22

0.1

1

10

100

1000

0 100 200 300 400 500 600 700

#dependences

Linearized Howard vs.

exponential backoff + binary

search [Rau et al. 1992]

22

0.1

1

10

100

1000

0 100 200 300 400 500 600 700

#dependences

Linearized Howard vs.

exponential backoff + binary

search [Rau et al. 1992]

22

0.1

1

10

100

1000

0 100 200 300 400 500 600 700

#dependences

Average 9X faster Average 9X faster Average 9X faster Average 9X faster

Peak 812X fasterPeak 812X fasterPeak 812X fasterPeak 812X faster

H≤3 for 96% of 11,992 loops 3 for 96% of 11,992 loops 3 for 96% of 11,992 loops 3 for 96% of 11,992 loops

Linearized Howard vs.

exponential backoff + binary

search [Rau et al. 1992]

22

0.1

1

10

100

1000

0 100 200 300 400 500 600 700

#dependences

Average 9X faster Average 9X faster Average 9X faster Average 9X faster

Peak 812X fasterPeak 812X fasterPeak 812X fasterPeak 812X faster

H≤3 for 96% of 11,992 loops 3 for 96% of 11,992 loops 3 for 96% of 11,992 loops 3 for 96% of 11,992 loops

H≤14 for all loops 14 for all loops 14 for all loops 14 for all loops

Linearized Bellman-Ford

23

Linearized Bellman-Ford

23

0%

50%

100%

2 3 4 5

% Total loops

B

Linearized Bellman-Ford

• B ≤ 3 for 98.8% of 11,992 loops

23

0%

50%

100%

2 3 4 5

% Total loops

B

Linearized Bellman-Ford

• B ≤ 3 for 98.8% of 11,992 loops

23

0%

50%

100%

2 3 4 5

% Total loops

B

Linearized Bellman-Ford

• B ≤ 3 for 98.8% of 11,992 loops
• B ≤ 5 for all the loops

23

0%

50%

100%

2 3 4 5

% Total loops

B

Linearized Bellman-Ford

• B ≤ 3 for 98.8% of 11,992 loops
• B ≤ 5 for all the loops
• From now on, we set H=10, B=5 � 11,910 loops scheduled

23

0%

50%

100%

2 3 4 5

% Total loops

B

Scheduling overhead &

schedules’ quality

24

RS2 DESP JITSP RS2 DESP JITSP

Overhead % loops with optimal schedules

95%

1X

Scheduling overhead &

schedules’ quality

• JITSP achieves optimal schedules for 95% loops

24

RS2 DESP JITSP RS2 DESP JITSP

Overhead % loops with optimal schedules

95%

1X

Scheduling overhead &

schedules’ quality

• JITSP achieves optimal schedules for 95% loops

24

RS2 DESP JITSP RS2 DESP JITSP

Overhead % loops with optimal schedules

95%12X

1X

Scheduling overhead &

schedules’ quality

• JITSP achieves optimal schedules for 95% loops

24

RS2 DESP JITSP RS2 DESP JITSP

Overhead % loops with optimal schedules

95%
13%

12X

1X

Scheduling overhead &

schedules’ quality

• JITSP achieves optimal schedules for 95% loops

24

RS2 DESP JITSP RS2 DESP JITSP

Overhead % loops with optimal schedules

95%
13%

25%

12X

1X

Scheduling overhead &

schedules’ quality

• JITSP achieves optimal schedules for 95% loops

24

RS2 DESP JITSP RS2 DESP JITSP

Overhead % loops with optimal schedules

95%

23%
13%

25%

12X

1X

Acyclic

scheduler,

27%

Software

pipelining,

33%

Hot region

optimizations,

34%

Assembler,

6%

Note: acyclic scheduler handles acyclic code, or loops
NOT selected for software pipelining

25

Compile overhead distribution

Preliminary performance

• 40 hot loops

26

Preliminary performance

• 40 hot loops

26

filtered

19%

too many

registers

55%

too many

unrolls

1%

Successfully

generated

code

25%

Preliminary performance

• 40 hot loops

26

filtered

19%

too many

registers

55%

too many

unrolls

1%

Successfully

generated

code

25%

Preliminary performance

• 40 hot loops

• The architecture has bottleneck in registers

– 2/7/24/32 predicate/static alias/integer/floating point

available for pipelining 26

filtered

19%

too many

registers

55%

too many

unrolls

1%

Successfully

generated

code

25%

Preliminary performance

• 40 hot loops

• The architecture has bottleneck in registers

– 2/7/24/32 predicate/static alias/integer/floating point

available for pipelining 26

filtered

19%

too many

registers

55%

too many

unrolls

1%

Successfully

generated

code

25%

Preliminary performance

• 40 hot loops

• The architecture has bottleneck in registers

– 2/7/24/32 predicate/static alias/integer/floating point

available for pipelining 26

filtered

19%

too many

registers

55%

too many

unrolls

1%

Successfully

generated

code

25%

Preliminary performance (Cont.)

27

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9 10

II/MII (The lower, the better)

RS2 DESP JITSP

Optimal

Preliminary performance (Cont.)

• JITSP achieves optimal schedules for all
but 1 loops

27

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9 10

II/MII (The lower, the better)

RS2 DESP JITSP

Optimal

Preliminary performance (Cont.)

• JITSP 10~36% speedup. Better than the others

28

-40%

-20%

0%

20%

40%

1 2 3 4 5 6 7 8 9 10

Speedup

RS2

DESP

JITSP

Preliminary performance (Cont.)

• JITSP 10~36% speedup. Better than the others
• Exception: loop 2. Optimal schedule but
slowdown due to memory aliases �
retranslation needed

28

-40%

-20%

0%

20%

40%

1 2 3 4 5 6 7 8 9 10

Speedup

RS2

DESP

JITSP

Preliminary performance (Cont.)

• JITSP 10~36% speedup. Better than the others
• Exception: loop 2. Optimal schedule but
slowdown due to memory aliases �
retranslation needed

• Speedup swim(5.3%), ammp(4.4%), mcf(3.6%)
28

-40%

-20%

0%

20%

40%

1 2 3 4 5 6 7 8 9 10

Speedup

RS2

DESP

JITSP

Conclusion

29

Conclusion

• 1st linear software pipelining algorithm
implemented for dynamic compilers

29

Conclusion

• 1st linear software pipelining algorithm
implemented for dynamic compilers

• Turns a traditionally-expensive optimization
into linear time O(V+E)

29

Conclusion

• 1st linear software pipelining algorithm
implemented for dynamic compilers

• Turns a traditionally-expensive optimization
into linear time O(V+E)
– Taking advantages of results from various domains:

• hardware circuit design (Retiming)

• stochastic control (Howard algorithm)

• Graph (Bellman-Ford)

• software pipelining (Rotation scheduling and DESP)

29

Conclusion

• 1st linear software pipelining algorithm
implemented for dynamic compilers

• Turns a traditionally-expensive optimization
into linear time O(V+E)
– Taking advantages of results from various domains:

• hardware circuit design (Retiming)

• stochastic control (Howard algorithm)

• Graph (Bellman-Ford)

• software pipelining (Rotation scheduling and DESP)

• Generates optimal or near-optimal schedules
with reasonable compile overhead

29

Future work

• Register availability
– Add more architecture registers

– Algorithm: Register pressure-aware

• Implementation
– Loop selection

– Re-translation

• Evaluation
– Benchmarks

30

Backup slides

31

Howard algorithm

32

• Each operation is rewarded to reach a cycle via
1 policy edge
– The bigger the cycle, the more the reward

Howard algorithm

32

a

c b

d

• Each operation is rewarded to reach a cycle via
1 policy edge
– The bigger the cycle, the more the reward

Howard algorithm

32

a

c b

d

• Each operation is rewarded to reach a cycle via
1 policy edge
– The bigger the cycle, the more the reward

Howard algorithm

32

a

c b

d

• Each operation is rewarded to reach a cycle via
1 policy edge
– The bigger the cycle, the more the reward

Distribution statistics of JITSP

33

