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Software pipelining has been static

• Extensively studied in 3 decades, and efficient for 
wide-issue architectures
– VLIW [Lam 1988] 

– superscalar [Ruttenberg et al. 1996]

• It is seen only in static compilers

• Most works aim to minimize II but not compile 
overhead
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It is time now to extend software 

pipelining to dynamic compilers!

• Dynamic languages are increasingly popular
– JavaScript and PhP 88.9% and 81.5% in client and server 
websites (W3Techs)

• Huge amount of legacy code 
– Small optimization scope: a loop iteration

– Software pipelining enlarges the scope to many iterations

• Minimizing compile overhead must be the 1st

objective
– Only simple/fast algorithms can be used

– linear-time algorithms are preferred
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Challenges

• Memory aliases kill parallelism
– Hardware: Atomic region + rotating alias registers [MICRO-46]

• Costly rollback
– Software: Light-weight checkpointing

• Scheduling is expensive
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Scheduling is expensive

• NP-complete problem to find an 
optimal schedule [Colland et al. 1996]

• O(V3) at least, exponential at worst 
[Rau et al. 1992]
– V: number of operations 

• Can we linearize software pipelining? 
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Keep scheduling time under control

• Schedule in linear time
– Use either simple or fast sub-algorithms

• Avoid cubic or exponential complexity 

– For iterative sub-algorithms, have a threshold: the 
maximum #iterations allowed

• The smaller the threshold, the less the compile overhead
• Once exceeded, abort software pipelining
• Key question: How small can the threshold be?

• Find a good enough schedule
– No backtracking
– Priority function: approximate and never update
– Separate dependence and resource constraints
– Separate local and loop-carried dependences

• Iteratively improve a schedule
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Prepartition
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Calculating RecMII

• Turn the problem into a Markov decision process
– 1st time Howard algorithm is applied to pipelining

• Linearize Howard with a small constant H
• A by-product: critical operations13

Conventional

O(V3)

Linearized 
Howard

O(   E)

Howard policy
iteration algo.

O(exponential*E)

• Recurrence Minimum II
– II determined by the biggest dependence cycles

– Needed by almost every software pipelining method



Divide operations into stages

 
 
 

 

 
 

14

Bellman-Ford

O(V*E)



Divide operations into stages

• Also an iterative sub-algorithm
 
 

 

 
 

14

Bellman-Ford

O(V*E)



Divide operations into stages

• Also an iterative sub-algorithm
• Linearize it with a constant B
 

 

 
 

14

Bellman-Ford

O(V*E)

Linearized 
Bellman-Ford

O(   E)B*



Divide operations into stages

• Also an iterative sub-algorithm

• Linearize it with a constant B

• Specific order in visiting edges
– Scan nodes in sequential order, and visit their incoming 
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• Values are propagated along local edges in the 1st itr.

• Values are propagated along loop-carried edges in the 2nd itr.
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Local scheduling

• Any local scheduling algorithm can be used
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Local scheduling

• Any local scheduling algorithm can be used
– E.g. list scheduling

• Weakness: 
– Loop-carried dependences may be violated

• To reduce the chance of violation: 
– Before scheduling, priority function considers loop-
carried dependences in advance

– Prioritize critical operations
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Experiments

• Transmeta CMS on SPEC2k traces

• Functional simulator to comprehensively

– Explore thresholds H and B
– Evaluate compile overhead and schedules’ quality

• Cycle-accurate simulator
– Simulates cache misses, latencies, …

– Initial performance study
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Linearized Bellman-Ford

• B ≤ 3 for 98.8% of 11,992 loops
• B ≤ 5 for all the loops
• From now on, we set H=10, B=5 � 11,910 loops scheduled
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Note: acyclic scheduler handles acyclic code, or loops 
NOT selected for software pipelining
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Preliminary performance (Cont.)

 

27

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9 10

II/MII (The lower, the better)

RS2 DESP JITSP

Optimal



Preliminary performance (Cont.)

• JITSP achieves optimal schedules for all 
but 1 loops
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Preliminary performance (Cont.)

• JITSP 10~36% speedup. Better than the others
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• JITSP 10~36% speedup. Better than the others
• Exception: loop 2. Optimal schedule but 
slowdown due to memory aliases �
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Preliminary performance (Cont.)

• JITSP 10~36% speedup. Better than the others
• Exception: loop 2. Optimal schedule but 
slowdown due to memory aliases �
retranslation needed

• Speedup swim(5.3%), ammp(4.4%), mcf(3.6%)
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Conclusion

• 1st linear software pipelining algorithm 
implemented for dynamic compilers

• Turns a traditionally-expensive optimization 
into linear time O(V+E)
– Taking advantages of results from various domains: 

• hardware circuit design (Retiming)

• stochastic control (Howard algorithm)

• Graph (Bellman-Ford)

• software pipelining (Rotation scheduling and DESP)
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Conclusion

• 1st linear software pipelining algorithm 
implemented for dynamic compilers

• Turns a traditionally-expensive optimization 
into linear time O(V+E)
– Taking advantages of results from various domains: 

• hardware circuit design (Retiming)

• stochastic control (Howard algorithm)

• Graph (Bellman-Ford)

• software pipelining (Rotation scheduling and DESP)

• Generates optimal or near-optimal schedules 
with reasonable compile overhead
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Future work

• Register availability
– Add more architecture registers

– Algorithm: Register pressure-aware

• Implementation
– Loop selection

– Re-translation

• Evaluation
– Benchmarks
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Backup slides
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Howard algorithm
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• Each operation is rewarded to reach a cycle via 
1 policy edge
– The bigger the cycle, the more the reward



Howard algorithm

32

a

c b

d

• Each operation is rewarded to reach a cycle via 
1 policy edge
– The bigger the cycle, the more the reward



Howard algorithm

32

a

c b

d

• Each operation is rewarded to reach a cycle via 
1 policy edge
– The bigger the cycle, the more the reward



Howard algorithm

32

a

c b

d

• Each operation is rewarded to reach a cycle via 
1 policy edge
– The bigger the cycle, the more the reward



Distribution statistics of JITSP
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