
Portable and Transparent Host-Device
Communication Optimization for

GPGPU Environments

Christos Margiolas, Michael F.P. O’Boyle

University of Edinburgh
Institute for Computing Systems Achritecture

February 17, 2014

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Host-Device Communication

What is Host-Device Communication?

CPU Cores

Memory

Host Side

CPU Cores

Memory

Host Side

CPU Cores

Memory

Host Side

GPU Cores

Memory

Device Side

Interconnect

H2D

D2H

• H2D: Host to Device Communication

• D2H: Device to Host Communication

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Host-Device Communication

What is Host-Device Communication?

CPU Cores

Memory

Host Side

CPU Cores

Memory

Host Side

CPU Cores

Memory

Host Side

GPU Cores

Memory

Device Side

Interconnect

H2D

D2H

• H2D: Host to Device Communication

• D2H: Device to Host Communication

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Computation Offloading

Why Host-Device Communication is required?

Input
Memory

Output
Memory

Input
Buffer

Kernel
Execution

Output
Memory

H2D

D2H

DeviceHost

Kernel
Dispatch

Computation offloading requires:

• H2D Transfer of Input Data

• D2H Transfer of Output Data

Communication Overhead

What is the impact of communication
overhead on application execution?

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Computation Offloading

Why Host-Device Communication is required?

Input
Memory

Output
Memory

Input
Buffer

Kernel
Execution

Output
Memory

H2D

D2H

DeviceHost

Kernel
Dispatch

Computation offloading requires:

• H2D Transfer of Input Data

• D2H Transfer of Output Data

Communication Overhead

What is the impact of communication
overhead on application execution?

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Computation Offloading

Why Host-Device Communication is required?

Input
Memory

Output
Memory

Input
Buffer

Kernel
Execution

Output
Memory

H2D

D2H

DeviceHost

Kernel
Dispatch

Computation offloading requires:

• H2D Transfer of Input Data

• D2H Transfer of Output Data

Communication Overhead

What is the impact of communication
overhead on application execution?

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Computation Offloading

Why Host-Device Communication is required?

Input
Memory

Output
Memory

Input
Buffer

Kernel
Execution

Output
Memory

H2D

D2H

DeviceHost

Kernel
Dispatch

Computation offloading requires:

• H2D Transfer of Input Data

• D2H Transfer of Output Data

Communication Overhead

What is the impact of communication
overhead on application execution?

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Quantifying the communication overhead

Dispatch Ratio =
Cumulative Host-Device Communication Time

Cumulative Device Computation Time

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Quantifying the communication overhead (2)
Dispatch Ratio across Parboil and Rodinia benchmarks

ho
ts

po
t

cf
d

pa
th

fid
er

le
uk

oc
yt

e
m

ri
-q

tp
ac

f

la
va

M
D

he
ar

tw
al

l
ga

us
si

an

sr
ad

pa
rt

ic
le

fil
te

r
cu

tc
p

lb
m lu
d

sp
m

v

st
en

ci
l

bf
s

km
ea

ns
m

ri
-g

ri
dd

in
g

sg
em

m nw

hi
st

o

sa
d nn

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

D
is

p
a
tc

h
 R

a
ti

o

1
.1

2
.0

5
.5

5
.6

2
9

.7

6
.4

5
.2

3
8

.1

Small Input Large Input

Communication Overhead

Significant to extremely high overhead for 12 benchmarks in total.

Reducing Communication Overhead

Can we reduce the communication overhead?

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Quantifying the communication overhead (2)
Dispatch Ratio across Parboil and Rodinia benchmarks

ho
ts

po
t

cf
d

pa
th

fid
er

le
uk

oc
yt

e
m

ri
-q

tp
ac

f

la
va

M
D

he
ar

tw
al

l
ga

us
si

an

sr
ad

pa
rt

ic
le

fil
te

r
cu

tc
p

lb
m lu
d

sp
m

v

st
en

ci
l

bf
s

km
ea

ns
m

ri
-g

ri
dd

in
g

sg
em

m nw

hi
st

o

sa
d nn

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

D
is

p
a
tc

h
 R

a
ti

o

1
.1

2
.0

5
.5

5
.6

2
9

.7

6
.4

5
.2

3
8

.1

Small Input Large Input

Communication Overhead

Significant to extremely high overhead for 12 benchmarks in total.

Reducing Communication Overhead

Can we reduce the communication overhead?

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Memory Allocation affects Communication Performance

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Standard Allocation:

• Mem. Pages Swappable

• Transfer per page

• Unsteady Performance

Host/Device
Communication in Enhanced Environment

Reduced DMA
Transfers

Device/Host

Memory
Pages

Allocation with Mem. Locking:

• Mem. Pages pinned in RAM

• Transfer per Max DMA size

• Improved performance

Issue 1: Platform capabilities

Multiple allocation policies available and affect Host-Device
Communication. Need to quantify and compare them.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Memory Allocation affects Communication Performance

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Standard Allocation:

• Mem. Pages Swappable

• Transfer per page

• Unsteady Performance

Host/Device
Communication in Enhanced Environment

Reduced DMA
Transfers

Device/Host

Memory
Pages

Allocation with Mem. Locking:

• Mem. Pages pinned in RAM

• Transfer per Max DMA size

• Improved performance

Issue 1: Platform capabilities

Multiple allocation policies available and affect Host-Device
Communication. Need to quantify and compare them.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Memory Allocation affects Communication Performance

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Host/Device
Communication in Standard Environment

Multiple DMA
Transfers

Device/Host

Memory
Pages

Standard Allocation:

• Mem. Pages Swappable

• Transfer per page

• Unsteady Performance

Host/Device
Communication in Enhanced Environment

Reduced DMA
Transfers

Device/Host

Memory
Pages

Allocation with Mem. Locking:

• Mem. Pages pinned in RAM

• Transfer per Max DMA size

• Improved performance

Issue 1: Platform capabilities

Multiple allocation policies available and affect Host-Device
Communication. Need to quantify and compare them.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Few Mem. Allocations used in Host-Device Communication

s=malloc(...);

… code...

a=malloc(...);

H2D(s);

...code...

r=malloc(...);

b=malloc(...);

D2H(r);

• Dozens of memory allocations performed by
an application.

• Only few are used for Host-Device
Communication.

Issue 2: Application Behavior

Need to detect the memory allocations that are used in
Host-Device communication. The goal is to serve them with the
allocation policy that leads to the highest communication rates.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Few Mem. Allocations used in Host-Device Communication

s=malloc(...);

… code...

a=malloc(...);

H2D(s);

...code...

r=malloc(...);

b=malloc(...);

D2H(r);

• Dozens of memory allocations performed by
an application.

• Only few are used for Host-Device
Communication.

Issue 2: Application Behavior

Need to detect the memory allocations that are used in
Host-Device communication. The goal is to serve them with the
allocation policy that leads to the highest communication rates.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Few Mem. Allocations used in Host-Device Communication

s=malloc(...);

… code...

a=malloc(...);

H2D(s);

...code...

r=malloc(...);

b=malloc(...);

D2H(r);

• Dozens of memory allocations performed by
an application.

• Only few are used for Host-Device
Communication.

Issue 2: Application Behavior

Need to detect the memory allocations that are used in
Host-Device communication. The goal is to serve them with the
allocation policy that leads to the highest communication rates.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Portability and Transparency

Processor Types:
CPUs,GPUs,HSA,DSPs,FPGAs
Programming Interface:
OpenCL

Matter of Fact

Target Platform remains unknown until the execution time.

Issue 3: Portability and Transparency

Need for optimizations portable across platforms and transparent
to applications and runtime libraries.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Portability and Transparency

Processor Types:
CPUs,GPUs,HSA,DSPs,FPGAs
Programming Interface:
OpenCL

Matter of Fact

Target Platform remains unknown until the execution time.

Issue 3: Portability and Transparency

Need for optimizations portable across platforms and transparent
to applications and runtime libraries.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Portability and Transparency

Processor Types:
CPUs,GPUs,HSA,DSPs,FPGAs
Programming Interface:
OpenCL

Matter of Fact

Target Platform remains unknown until the execution time.

Issue 3: Portability and Transparency

Need for optimizations portable across platforms and transparent
to applications and runtime libraries.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Optimization Overview

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Off-Line Characterizations
Platform Characterization

Application Characterization

Runtime Optimization

Enhanced Execution
Environment

OpenCL
Application

Mem. Allocation
Policies

• Platform Characterization discovers the memory allocation
and host-device communication capabilities of the platform.

• Application Characterization detects the memory
allocations that are used in host-device communication.

• Runtime Optimization uses both characterizations for the
runtime optimization of the application.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Optimization Overview

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Off-Line Characterizations
Platform Characterization

Application Characterization

Runtime Optimization

Enhanced Execution
Environment

OpenCL
Application

Mem. Allocation
Policies

• Platform Characterization discovers the memory allocation
and host-device communication capabilities of the platform.

• Application Characterization detects the memory
allocations that are used in host-device communication.

• Runtime Optimization uses both characterizations for the
runtime optimization of the application.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Optimization Overview

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Off-Line Characterizations
Platform Characterization

Application Characterization

Runtime Optimization

Enhanced Execution
Environment

OpenCL
Application

Mem. Allocation
Policies

• Platform Characterization discovers the memory allocation
and host-device communication capabilities of the platform.

• Application Characterization detects the memory
allocations that are used in host-device communication.

• Runtime Optimization uses both characterizations for the
runtime optimization of the application.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Optimization Overview

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Off-Line Characterizations
Platform Characterization

Application Characterization

Runtime Optimization

Enhanced Execution
Environment

OpenCL
Application

Mem. Allocation
Policies

• Platform Characterization discovers the memory allocation
and host-device communication capabilities of the platform.

• Application Characterization detects the memory
allocations that are used in host-device communication.

• Runtime Optimization uses both characterizations for the
runtime optimization of the application.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.
We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.

We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.
We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.
We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.
We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.
We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Micro-benchmarking

 Performance
Statistics

Perf. Estimation
Functions

Micro-
Benchmarking

Platf. Analysis/
Curve Fitting

Platform Characterization

Mem. Allocation
Policies

Two micro-benchmarks provide allocation and communication
overhead statistics.
We consider the following memory allocation policies:

• Standard, the standard memory allocator.

• OpenCL, allocation via OpenCL library.

• Standard with Locking, allocation with memory locking via
POSIX.

• Hybrid, combination of OpenCL and POSIX policies.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Performance Estim. Functions
Allocation Overhead

0 100 200 300 400 500 600 700 800
Allocation Size (MB)

0

100

200

300

400

A
llo

ca
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std

OpenCL

Std(Lock)

Hybrid

Communication Overhead

0 100 200 300 400 500 600
Transfer Size (MB)

0

5

10

15

20

25

30

35

40

C
o
m

m
u
n
ic

a
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std-H2D

OpenCL-H2D

Std(Lock)-H2D

Hybrid-H2D

Remark: Policies with high allocation overhead lead to low
communication overhead.
Curve fitting is performed on the collected statistics and generates
performance estimation functions.

• allocation overhead(alloc policy, size);

• communication overhead(alloc policy, size);

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Performance Estim. Functions
Allocation Overhead

0 100 200 300 400 500 600 700 800
Allocation Size (MB)

0

100

200

300

400

A
llo

ca
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std

OpenCL

Std(Lock)

Hybrid

Communication Overhead

0 100 200 300 400 500 600
Transfer Size (MB)

0

5

10

15

20

25

30

35

40

C
o
m

m
u
n
ic

a
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std-H2D

OpenCL-H2D

Std(Lock)-H2D

Hybrid-H2D

Remark: Policies with high allocation overhead lead to low
communication overhead.
Curve fitting is performed on the collected statistics and generates
performance estimation functions.

• allocation overhead(alloc policy, size);

• communication overhead(alloc policy, size);

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Performance Estim. Functions
Allocation Overhead

0 100 200 300 400 500 600 700 800
Allocation Size (MB)

0

100

200

300

400

A
llo

ca
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std

OpenCL

Std(Lock)

Hybrid

Communication Overhead

0 100 200 300 400 500 600
Transfer Size (MB)

0

5

10

15

20

25

30

35

40

C
o
m

m
u
n
ic

a
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std-H2D

OpenCL-H2D

Std(Lock)-H2D

Hybrid-H2D

Remark: Policies with high allocation overhead lead to low
communication overhead.

Curve fitting is performed on the collected statistics and generates
performance estimation functions.

• allocation overhead(alloc policy, size);

• communication overhead(alloc policy, size);

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Performance Estim. Functions
Allocation Overhead

0 100 200 300 400 500 600 700 800
Allocation Size (MB)

0

100

200

300

400

A
llo

ca
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std

OpenCL

Std(Lock)

Hybrid

Communication Overhead

0 100 200 300 400 500 600
Transfer Size (MB)

0

5

10

15

20

25

30

35

40

C
o
m

m
u
n
ic

a
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std-H2D

OpenCL-H2D

Std(Lock)-H2D

Hybrid-H2D

Remark: Policies with high allocation overhead lead to low
communication overhead.
Curve fitting is performed on the collected statistics and generates
performance estimation functions.

• allocation overhead(alloc policy, size);

• communication overhead(alloc policy, size);

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Platform Characterization / Performance Estim. Functions
Allocation Overhead

0 100 200 300 400 500 600 700 800
Allocation Size (MB)

0

100

200

300

400

A
llo

ca
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std

OpenCL

Std(Lock)

Hybrid

Communication Overhead

0 100 200 300 400 500 600
Transfer Size (MB)

0

5

10

15

20

25

30

35

40

C
o
m

m
u
n
ic

a
ti

o
n
 O

v
e
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Std-H2D

OpenCL-H2D

Std(Lock)-H2D

Hybrid-H2D

Remark: Policies with high allocation overhead lead to low
communication overhead.
Curve fitting is performed on the collected statistics and generates
performance estimation functions.

• allocation overhead(alloc policy, size);

• communication overhead(alloc policy, size);

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (1)

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

Application Characterization

Application tracing generates a Compressed Trace with:

• Every call to OpenCL and memory allocation functions.

• Dependences between the calls and data objects.

• Performance statistics for host-device communication and
kernel execution operations.

Important Feature

Trace compression guarantees that the trace remains the same
regardless of the input size.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (1)

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

Application Characterization

Application tracing generates a Compressed Trace with:

• Every call to OpenCL and memory allocation functions.

• Dependences between the calls and data objects.

• Performance statistics for host-device communication and
kernel execution operations.

Important Feature

Trace compression guarantees that the trace remains the same
regardless of the input size.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (1)

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

Application Characterization

Application tracing generates a Compressed Trace with:

• Every call to OpenCL and memory allocation functions.

• Dependences between the calls and data objects.

• Performance statistics for host-device communication and
kernel execution operations.

Important Feature

Trace compression guarantees that the trace remains the same
regardless of the input size.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (1)

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

Application Characterization

Application tracing generates a Compressed Trace with:

• Every call to OpenCL and memory allocation functions.

• Dependences between the calls and data objects.

• Performance statistics for host-device communication and
kernel execution operations.

Important Feature

Trace compression guarantees that the trace remains the same
regardless of the input size.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (1)

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

Application Characterization

Application tracing generates a Compressed Trace with:

• Every call to OpenCL and memory allocation functions.

• Dependences between the calls and data objects.

• Performance statistics for host-device communication and
kernel execution operations.

Important Feature

Trace compression guarantees that the trace remains the same
regardless of the input size.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (1)

Application
Tracing

Application
Analysis

 Call Trace/
Perf. Stats

Optimization
Directives

Application Characterization

Application tracing generates a Compressed Trace with:

• Every call to OpenCL and memory allocation functions.

• Dependences between the calls and data objects.

• Performance statistics for host-device communication and
kernel execution operations.

Important Feature

Trace compression guarantees that the trace remains the same
regardless of the input size.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (2)

Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Tracing

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

• Tracing is performed via a wrapping library.

• An SSA scheme is used for tracking the updates of non-scalar
data objects, such as OpenCL Memory Buffers.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (2)

Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Tracing

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

• Tracing is performed via a wrapping library.

• An SSA scheme is used for tracking the updates of non-scalar
data objects, such as OpenCL Memory Buffers.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (2)

Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Tracing

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

• Tracing is performed via a wrapping library.

• An SSA scheme is used for tracking the updates of non-scalar
data objects, such as OpenCL Memory Buffers.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Tracing (2)

Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Tracing

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

• Tracing is performed via a wrapping library.

• An SSA scheme is used for tracking the updates of non-scalar
data objects, such as OpenCL Memory Buffers.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Application Analysis

The analysis operates on the compressed trace in two stages.

1: Optimization Eligibility Heuristic:

Dispatch Ratio =
Cumulative Host-Device Communication Time

Cumulative Device Computation Time

An application is eligible if:

Dispatch Ratio ≥ 0.1

2: Memory Allocation Detection:
If the application is eligible, the detection of memory
allocations used in host-device communication takes place.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Application Analysis

The analysis operates on the compressed trace in two stages.

1: Optimization Eligibility Heuristic:

Dispatch Ratio =
Cumulative Host-Device Communication Time

Cumulative Device Computation Time

An application is eligible if:

Dispatch Ratio ≥ 0.1

2: Memory Allocation Detection:
If the application is eligible, the detection of memory
allocations used in host-device communication takes place.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Application Characterization / Application Analysis

The analysis operates on the compressed trace in two stages.

1: Optimization Eligibility Heuristic:

Dispatch Ratio =
Cumulative Host-Device Communication Time

Cumulative Device Computation Time

An application is eligible if:

Dispatch Ratio ≥ 0.1

2: Memory Allocation Detection:
If the application is eligible, the detection of memory
allocations used in host-device communication takes place.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Runtime Optimization
Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

• Redirection of the annotated allocations to the best policy.
• Both Platform and Application characterizations required.
• User-space memory allocators for policies with high overhead.
• Safety. If an application presents an unexpected behavior, the

optimization falls back to the default behavior.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Runtime Optimization
Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

• Redirection of the annotated allocations to the best policy.
• Both Platform and Application characterizations required.
• User-space memory allocators for policies with high overhead.
• Safety. If an application presents an unexpected behavior, the

optimization falls back to the default behavior.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Runtime Optimization
Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

• Redirection of the annotated allocations to the best policy.

• Both Platform and Application characterizations required.
• User-space memory allocators for policies with high overhead.
• Safety. If an application presents an unexpected behavior, the

optimization falls back to the default behavior.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Runtime Optimization
Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

• Redirection of the annotated allocations to the best policy.
• Both Platform and Application characterizations required.

• User-space memory allocators for policies with high overhead.
• Safety. If an application presents an unexpected behavior, the

optimization falls back to the default behavior.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Runtime Optimization
Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

• Redirection of the annotated allocations to the best policy.
• Both Platform and Application characterizations required.
• User-space memory allocators for policies with high overhead.

• Safety. If an application presents an unexpected behavior, the
optimization falls back to the default behavior.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Runtime Optimization
Standard Function Call

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

OpenCL/
Mem. Allocation

Library

Call with Optimization

Function
Call

Read
Arguments

Write
Arguments

Application
Call Flow

Default
Functions

Call
Forwarding

Wrapping
Library

Read
Arguments
Monitoring

Write
Arguments
Monitoring

Allocation
Manager

Redirection

• Redirection of the annotated allocations to the best policy.
• Both Platform and Application characterizations required.
• User-space memory allocators for policies with high overhead.
• Safety. If an application presents an unexpected behavior, the

optimization falls back to the default behavior.
Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:

Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.

Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.

Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Experimental Setup

Platforms:
We evaluate on three platform configurations.

GTX Platform Intel i7 X990 3.47GHz, 12GB 1333MHz,
NVIDIA GTX 580

AMD Platform Intel i7 X990 3.47GHz, 8GB 1333MHz,
ATI Radeon HD 5970

K20 Platform Intel i7 3820 3.60GHz, 8GB 1333MHz,
NVIDIA Tesla K20c

Benchmarks:
Two Benchmark suites, Rodinia and Parboil.
Evaluation with 12 optimization eligible benchmarks.
Use of the smallest and largest available datasets.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on GTX Platform

lb
m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.49

Gmean(Large)=1.51

Small Input Large Input

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on GTX Platform
lb

m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.49

Gmean(Large)=1.51

Small Input Large Input

• Speedups from 1.05x to 3.0x.

• Gmean speedup remains roughly
stable across datasets.

• Speedup gains proportional to
dispatch ratio.

ho
ts

po
t

cf
d

pa
th

fid
er

le
uk

oc
yt

e
m

ri
-q

tp
ac

f

la
va

M
D

he
ar

tw
al

l
ga

us
si

an

sr
ad

pa
rt

ic
le

fil
te

r
cu

tc
p

lb
m lu
d

sp
m

v

st
en

ci
l

bf
s

km
ea

ns
m

ri
-g

ri
dd

in
g

sg
em

m nw

hi
st

o

sa
d nn

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

D
is

p
a
tc

h
 R

a
ti

o

1
.1

2
.0

5
.5

5
.6

2
9

.7

6
.4

5
.2

3
8

.1

Small Input Large Input

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on AMD Platform

lb
m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.25

Gmean(Large)=1.31

Small Input Large Input

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on AMD Platform
lb

m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.25

Gmean(Large)=1.31

Small Input Large Input

• Speedups ranging from
1.05x to 1.7x.

• Similar gmean speedup for
both datasets.

AMD Platform presents lower speedups than the NVIDIA one.
Two are the main reasons:

• AMD OpenCL uses intermediate data buffers allocated with
special policies as part of its implementation.

• AMD OpenCL restricts allocations with memory locking to
low sizes.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on AMD Platform
lb

m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.25

Gmean(Large)=1.31

Small Input Large Input

• Speedups ranging from
1.05x to 1.7x.

• Similar gmean speedup for
both datasets.

AMD Platform presents lower speedups than the NVIDIA one.
Two are the main reasons:

• AMD OpenCL uses intermediate data buffers allocated with
special policies as part of its implementation.

• AMD OpenCL restricts allocations with memory locking to
low sizes.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on AMD Platform
lb

m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.25

Gmean(Large)=1.31

Small Input Large Input

• Speedups ranging from
1.05x to 1.7x.

• Similar gmean speedup for
both datasets.

AMD Platform presents lower speedups than the NVIDIA one.
Two are the main reasons:

• AMD OpenCL uses intermediate data buffers allocated with
special policies as part of its implementation.

• AMD OpenCL restricts allocations with memory locking to
low sizes.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on K20 Platform

lb
m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.44

Gmean(Large)=1.48

Small Input Large Input

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on K20 Platform
lb

m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.44

Gmean(Large)=1.48

Small Input Large Input

• Speedups from 1.1x to 2.9x.

• Gmean speedup roughly
stable for both datasets.

The performance gains are similar to the one of GTX platform.
We notice only significant difference for nn and nw benchmarks.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on K20 Platform
lb

m lu
d

sp
m

v

st
en

ci
l

b
fs

km
ea

n
s

m
ri

-g
ri

d
d
in

g
sg

em
m n
w

h
is

to

sa
d n
n

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.44

Gmean(Large)=1.48

Small Input Large Input

• Speedups from 1.1x to 2.9x.

• Gmean speedup roughly
stable for both datasets.

The performance gains are similar to the one of GTX platform.
We notice only significant difference for nn and nw benchmarks.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation with Tuned Benchmarks

• Parboil provides tuned versions of its benchmarks for NVIDIA.

• The benchmarks now have faster kernels for NVIDIA GPUs.

• We evaluate our optimization on GTX Platform.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on GTX Platform (Tuned Parboil)

lb
m

sp
m

v

st
en

ci
l

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.83

Gmean(Large)=1.7

Small Input Large Input

• Increased speedups ranging from 1.1x to 2.8x.
• Gmean speedup has increased, 1.83x and 1.7x.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on GTX Platform (Tuned Parboil)

Tuned Parboil

lb
m

sp
m

v

st
en

ci
l

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.83

Gmean(Large)=1.7

Small Input Large Input

Standard(Parboil excl)

lb
m

sp
m

v

st
en

ci
l

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.55

Gmean(Large)=1.45

Small Input Large Input

• Our optimization now delivers about 25% higher speedups.

In fact, optimized kernels expose further the communication
overhead and our optimization has additional effect.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Performance Evaluation on GTX Platform (Tuned Parboil)

Tuned Parboil

lb
m

sp
m

v

st
en

ci
l

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.83

Gmean(Large)=1.7

Small Input Large Input

Standard(Parboil excl)

lb
m

sp
m

v

st
en

ci
l

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

G
m

ea
n

Benchmarks

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Gmean(Small)=1.55

Gmean(Large)=1.45

Small Input Large Input

• Our optimization now delivers about 25% higher speedups.

In fact, optimized kernels expose further the communication
overhead and our optimization has additional effect.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces

• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.

• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture

• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.

• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.

• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.

• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Future Work

We consider future applications for our optimization. We focus on:

• Virtually Unified Address Spaces
• Data transfers still take place.
• Need for Efficient Data-Prefetching.

• HSA Architecture
• CPU/GPU cores share single memory.
• Need for data placement that reduces memory contention.
• Need for efficent Memory Allocation.
• Special Memory Allocation policies targeting data placement.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Summary

We build a host-device communication optimization for
GPGPU environments which:

• Leads to significant speedups (1.51x, 1.31x, 1.48x)

• Is portable across platforms.

• Is transparent to applications, Runtime and OS.

• Automatically detects platform capabilities and application
behavior.

• Requires no application code modification or recompilation.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Summary

We build a host-device communication optimization for
GPGPU environments which:

• Leads to significant speedups (1.51x, 1.31x, 1.48x)

• Is portable across platforms.

• Is transparent to applications, Runtime and OS.

• Automatically detects platform capabilities and application
behavior.

• Requires no application code modification or recompilation.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Summary

We build a host-device communication optimization for
GPGPU environments which:

• Leads to significant speedups (1.51x, 1.31x, 1.48x)

• Is portable across platforms.

• Is transparent to applications, Runtime and OS.

• Automatically detects platform capabilities and application
behavior.

• Requires no application code modification or recompilation.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Summary

We build a host-device communication optimization for
GPGPU environments which:

• Leads to significant speedups (1.51x, 1.31x, 1.48x)

• Is portable across platforms.

• Is transparent to applications, Runtime and OS.

• Automatically detects platform capabilities and application
behavior.

• Requires no application code modification or recompilation.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Summary

We build a host-device communication optimization for
GPGPU environments which:

• Leads to significant speedups (1.51x, 1.31x, 1.48x)

• Is portable across platforms.

• Is transparent to applications, Runtime and OS.

• Automatically detects platform capabilities and application
behavior.

• Requires no application code modification or recompilation.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Summary

We build a host-device communication optimization for
GPGPU environments which:

• Leads to significant speedups (1.51x, 1.31x, 1.48x)

• Is portable across platforms.

• Is transparent to applications, Runtime and OS.

• Automatically detects platform capabilities and application
behavior.

• Requires no application code modification or recompilation.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Thank you!

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (1) / Tracing

Code Sample

1 segm=malloc(SIZE);

2 clSetKernelArg(kernel ,, &buf);

3 for(i=0; i<n; i++)

4 {

5 do_smth (&segm);

6 clEnqueueWriteBuffer (..., buf , segm , ...);

7 clEnqueueNDRangeKernel (..., kernel , ...);

8 clEnqueueReadBuffer (..., buf , ..., segm);

9 }

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (2) / Tracing

Performed Function Calls
Call Def Use

malloc s0
karg k1 b0,k0

wbuffer b1 b0,s0,q0
kexec b2 b1,k1,q0

rbuffer s1 b2,s0,q0
wbuffer b3 b2,s1,q0
kexec b4 b3,k1,q0

rbuffer s2 b4,s0,q0
... n-3 loop iterations ...

wbuffer b2n+1 b2n,sn,q0
kexec b2n+2 b2n+1,k1,q0

rbuffer sn+1 b2n+2,s0,q0

Compressed Call Trace
Call Def Use

malloc s0
karg k1 b0,k0

wbuffer(#n) b1 b0,s0,q0
kexec(#n) b2 b1,k1,q0

rbuffer(#n) s1 b2,s0,q0

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (3) / Analysis Algorithm

Allocation Detection Algorithm

1 for each c in the Call Trace

2 if c is a host -device communication that involves a

↪→memory segment s

3 retrieve s’, the first state of s (through SSA)

4 retrieve co, the creator (allocation call) of s’

5 annotate co as optimization candidate

• The compressed trace is given as input.

• It detects the memory allocations that are used for host-device
communication.

• It outputs the annotated allocations for the runtime optimizer.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (3) / Analysis Algorithm

Allocation Detection Algorithm

1 for each c in the Call Trace

2 if c is a host -device communication that involves a

↪→memory segment s

3 retrieve s’, the first state of s (through SSA)

4 retrieve co, the creator (allocation call) of s’

5 annotate co as optimization candidate

• The compressed trace is given as input.

• It detects the memory allocations that are used for host-device
communication.

• It outputs the annotated allocations for the runtime optimizer.

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (4) / Execution Breakdowns

Execution Breakdowns for GTX Platform

lbm lud spmv
stencil bfs kmeans

mri-gridding sgemm nw histo sad nn

Benchmarks

E
x
e
cu

ti
o
n
 T

im
e
 (

m
ill

is
e
co

n
d
s)

56128

17
31

315
235

584
816

26
431

89315

13
385

55793

13

22 236
206

526

508

22

144
42001 7

182

Kernel Time (GPU) Communication Time CPU + Sync Time

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (5) / Execution Breakdowns

Execution Breakdowns for GTX Platform (Tuned Parboil)

spmv
stencil lbm

mri-gridding sgemm histo sad

Benchmarks

E
x
e
cu

ti
o
n
 T

im
e
 (

m
ill

is
e
co

n
d
s)

35
315

8104

699
14

109190

15

23
236

7763

386

10

38645

5

Kernel Time (GPU) Communication Time CPU + Sync Time

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

Special Forces (6) / Tuned Parboil Ratio Comp

Tuned Parboil

sp
m

v

st
en

ci
l

lb
m

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
is

p
a
tc

h
 R

a
ti

o

0
.6

1

0
.7

6

1
.3

6

1
0

.0
9

1
0

.3
8

1
.2

2

9
.9

7

Small Input Large Input
Standard Parboil

lb
m

sp
m

v

st
en

ci
l

m
ri

-g
ri

d
d
in

g

sg
em

m

h
is

to

sa
d

Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
is

p
a
tc

h
 R

a
ti

o

1
.0

5

5
.5

3

5
.6

4

5
.2

Small Input Large Input

Christos Margiolas CGO 2014 www.inf.ed.ac.uk

