UNIVERSITAS SCIENTIARUM SZEGEDIENSIS
UNIVERSITY OF SZEGED

Extending the PCRE Library
with Static Backtracking
Based Just-in-Time
Compilation Support

Zoltan Herczeg
19/02/14

Outline

ITY OF SZEGED

Motivation
%@ PCRE-JIT compiler
@% Static backtracking
Results

Raw backtracking performance
PCRE-JIT engine

UNIVERSITAS SCIENTIARUM SZE

|

Motivation

m::mm:%:mmé\sk k MwEthwQ

d3do3aZs 40 AL m_>_ZD
m dd93ZS WNYVILNIIOS SVYLISH3IAINN

History of Regular Expressions

Kleene: regular sets in 1950s

22> » Thompson: Deterministic Finite
2=z- Automaton (DFA) in 1960s

A pattern was constructed from character
sets, and few operators: star, vertical bar

Purpose of 'real’ reqular expressions

Defining a pattern which matches a set of
words

/c|]ab*/ matches c, a, ab, abb, abbb, ...

TY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

|

Regular Expressions Today

Henry Spencer: backtracking engine in
o 1980s (open source)

o2 Nondeterministic Finite Automaton (NFA)

Improved later by PERL developers
Command based pattern matching language
Backward compatible
Closer to scripting languages

Context sensitive decisions
Reduces complexity

TY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

Matches only when fox is outside of <> brackets:
PERL: /<((?:[A<>]*+(?:<(?1) |))++>?)(*SKIP)(*F) | fox/

Matches: <<fox>fox>fox
@’ No match: <fox<<>fox>fox>
o= No match: <<fox>fox

SITY OF SZEGED
oftware Engineering

IENSIS
R
S

Q& Multibyte character sequences:
PERL: /a(?>\r\n|\r|\n){2}b/
DFA: /a(?:\r(?:\n(?:\r\n|\r]|\n) |\r\n) |\n\r\n?)b/

VMatches: a\r\r\nb
Matches: a\n\rb
No match: a\r\nb

[(X]x){n}y/ /a[~b]{n}abc/

4000 ms 4000 ms

ITY OF SZEGED

UNIVERS
Department of Software Engineering

3500 ms 3500 ms

23000 ms 3000 ms
2500 ms 2300 ms
2000 ms 2000 ms
1500 ms 1200 ms
1000 ms 1000 ms
500 ms 00 ms I

Oms

21 22 23 24 25

0ms — — — — —

25 26 27 28 29

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

PCRE HRE2

Summary

ITY OF SZEGED

New approach is needed to accelerate
w2 these “regular expressions”

o2 DFA is not enough anymore

Command based languages can be
efficiently accelerated by Just-in-time
(JIT) compilation

2009 lrregexp

2009 YARR (Yet Another Regex Runtime)

2011 PCRE-JIT

S

UNIVERSITAS SCIENTIARUM SZE

PCRE-JIT compiler

m::mm:%:mmé\sk k MwEthwQ

d3do3aZs 40 AL m_>_ZD
O m dd93ZS WNYVILNIIOS SVYLISH3IAINN

- PCRE Overview

<§ Perl Compatible Regular Expressions

o Standalone C library, which supports PERL
= style patterns

y Started by Philip Hazel in 1997

PCRE-JIT supports all of its features

Comparison of regular expression engines in
Wikipedia: Only PCRE supports all 19
categories

http://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines

UNIVERSITAS SCIENTIARUM SZ

[ERN
(@)

2= Main Components of PCRE-JIT
;é PCRE byte code

Static Backtracking based
PCRE-JI'T compiler

!

SLJIT compiler

PCRE-JIT
engine

Y

UNIVERSITAS SCIENTIARUM SZE

Machine code

=
=

SLJIT Compiler

Low-level assembly like language
7 Translated to machine code

i Platform independent

LIR Is designed by uniting the common
features of CPUs

Supported architectures

X86-32/64, ARMV5/7/Thumb?2,
PowerPC-32/64, MIPS-32, SPARC-32

ARM-64 Is close to done

TY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

[ERN
|

|
SITY OF SZEGED
oftware Engineering

IENSIS
R
S

us Evolution of
ok Backtracking Algorithms

[ERN
w

A - n
2 Interpreting (?:B)+ Pattern
TS .
NS boolean recursive_match() {
s // Infinite loop for taill merging.
i§ while (TRUE) {
%mé switch (*current_opcode) {
Zox
|_|_Jui‘§ // .o
=<
D5 case GREEDY_PLUS_CLOSE_BRACKET:
2. if (recursive match() == SUCCESS)
Q return SUCCESS

// Tail merge.

current_opcode += opcode _size(
GREEDY_PLUS CLOSE_BRACKET)

// Back to the while loop.

break;

UNIVERSITAS SCIENTIARUM SZEGE

Static Backtracking

JIT compilers replaced recursive function
z2- calls to try-catch blocks

o2 Unknown destination when backtracking
Our new approach: Static Backtracking

Generating code from Abstract Syntax
Tree (AST)

Each node has exactly one parent node, and
It Is known at compile time

ITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

[
H

ng

SZEGED
e

OF
oftware Engineeri

UNIVERSITAS SCIENTIARUM SZE

Nondeterministic Abstract
Finite Automaton Syntax Tree

iy (iry
t W

Continue matching: green lines
Perform backtracking: red lines / texts

16

Static Backtracking (2)

Not all NFAs are supported

00 Enough for PERL compatible patterns: they
= are always compiled to an AST first

Context dependent backtracking
No need to set-up catch handlers

Direct, conditional jumps

Indirect jumps are usually not conditional:
two jJumps are needed for checking a
condition and backtrack on fall

TY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

[ERN
|

Overview of Building Blocks

wo code paths are generated from each
»2- AST node

o> Matching path: action

Backtracking path: reverse action

These two code paths form a single
function
With two entry, two exit points

Optimization: these points can represent
passing or returning a boolean value

ITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEG

[
H

ITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZ

Basic Building Block

Try a new match.
Input position
contains a valid

starting position.

Y

Find another match.
A valid context
is provided on the
top of the stack.

Matching path

Backtracking path

A match is found.
A valid context is
stored on the top of
the stack. The input
position contains the
end of the match.

No match is found.
Removes the top-
most context if ap-
propriate. Input po-
sition is undefined.

Match

Matching path color: green
Backtracking path color: red

Results

m::mm:%:mgc\sk k HwEthwQ

d3do3aZs 40 AL m_>_ZD
m dd93ZS WNYVILNIIOS SVYLISH3IAINN

Raw Backtracking Performance

Measured on pathological cases

ITY OF SZEGED

02 Exponential runtime, large amount of backt.

s _ _

15- » Compared to Irregexp (in V8 JavaScript
engine)

Traditional (indirect jump) based backtracking
Highly optimized engine

These patterns cannot be optimized by
backtracking elimination techniques

E.g: expected character check

UNIVERSITAS SCIENTIARUM SZE

D |

2- Pathological Cases

N

n

o Pattern Input Irregexp Irregexp PCRE JIT PCRE JIT
e (ms) ratio (ms) ratio
@g 1 /a?%%c|/ a*"be 777.0 2.20 352.5 1.00
£>° 2 Jat'ic|/ a*bte 2216 1.21 182.8 1.00
WSS 3 /(7:a+)+c|/ a**be 1012 1.44 70.5 1.00
NS4 /(7))]/ a**be 102.8 1.20 85.9 1.00
= 5 /(?7:(Taa)4)+cl|/ a*Cbe 99.5 1.18 84.2 1.00
éi: 6 /((a)+)+c|/ a*be 220.1 1.70 129.2 1.00
= 7 /((7(Taa)+)+) el / a*’be 217.7 2.14 101.7 1.00
0 8 /(((aa)+)+)+c|/ a**be 364.6 2.16 168.6 1.00
A9 /(2ala)*c|/ a*be 1105 1.00 400.7 3.63
< 10 /(?aala)*c|/ a*be 194.2 1.93 100.4 1.00
G 11 /(aala)*c|/ a*®be 179.4 1.15 155.6 1.00
>
P
)

N
w

Overall Speedup

Benchmark set provided by SNORT
o Intrusion Detection System (IDS)

s >1000 HTTP content filtering patterns

Compared to PCRE Interp. , and lrregexp

All engine optimizations are enabled
(including backtracking eliminations)

Backtracking is not a rare event

About 46% of matching attempts are failed in
the PCRE interpreter

ITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

N
|

=
UNIVERSITY OF SZEGED
Department of Software Engineering

IENSIS

UNIVERSITAS SCIENTIARUM SZEGE

PCRE-JIT vs PCRE Interpreter

Average < 3.0 x as fast 3.0 - oo x as fast
Target speedup % of % oftotal | % of % of total

CPU (x as fast) | patterns runtime | patterns runtime
x86,/32 6.84 | 84.99% 3.66% | 15.01% 96.34%
x86,/64 5.55 | 82.92% 3.80% | 17.08% 96.20%
ARM-V7/32 6.76 | 82.24% 3.711% | 17.76% 96.29%
ARM-THUMB2 /32 7.24 | 84.59% 3.78% | 15.41% 96.22%
PowerPC/32 548 | 88.13% 6.47% | 11.87% 93.53%
PowerPC /64 5.05 | 88.427% 6.38% | 11.58% 93.62%
SPARC/32 5.85 | 83.61% 4.08% | 16.39% 95.92%
MIPS/32 7.59 | 81.35% 3.27% | 18.65% 96.73%
Average 6.36 | 84.53% 4.39% | 1547% 95.61%
Std. dev. 0.79| 2.42% 1.19% | 2.42% 1.19%

N
Ul

S

N
1

93
wn
1.56x as slow

= Overall: PCRE-JIT is 1.63x faster than Irregexp
o 70— O Irregexp M PCRE-JIT
js Number of patterns
M in each group 2 60
5S¢] 3 2
- 2 p
g@% M < 50 S
iuﬁo\ g “>§
2 5 40 =
D§ m
3 ® 30—
A 2 30
-
=
IS
O
|_

799 (78.56%)
123 (12.09%)
95 (9.34%)

[1S:
B M:
ML

<
1.19x as fast

S: Patterns with short runtime (0-20 ms)
M: Patterns with medium runtime (20-200 ms)
L: Patterns with long runtime (200-2000ms)

UNIVERSITAS SCIENTIARUM SZEGE

Patterns(%) Unsupported by DFA

100%™

ITY OF SZEGED

Most patterns in
group L are not
supported by DFA
based engines!

DFA Is not a viable
option to accelerate
these long running

patterns

80%

60%

40%

20%

Patterns (%) unsupported by DFA

0%~

UNIVERSITAS SCIENTIARUM SZ

N
~

Conclusion
and
Future Work

m::mm:%:mmé\sk k MwEthwQ

d3do3aZs 40 AL m_>_ZD
m dd93ZS WNYVILNIIOS SVYLISH3IAINN

Conclusion

Regular expressions are changed

7 Better to optimize them using JIT compiling

z=- » Traditional NFA based backtracking can

be improved by AST based backtracking
Context dependent backtracking

Results (SNORT benchmark set)

6.36x faster than interpreter
1.63x faster than Irregexp

ITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

N
(]

Future Work

TY OF SZEGED

Further improve the JIT compiler

2 Integrating optimizations used by other
= engines
o=

A simplified Boyer-Moore string search was
already implemented

Support more CPUs (in SLJIT)
MIPS-64, SPARC-64

UNIVERSITAS SCIENTIARUM SZE

w
(@]

PCRE-JIT Is Production Ready

NGINX Web Server

oz ¥ Qt Framework (since 5.0)

55- » Suricata Intrusion Detection System
Apache ModSecurity Firewall

GNU grep (with -P option)

HAProxy Load Balancer

Sigil E-book Editor

ITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZE

w
-

Thanks for listening
Questions?

m::mm:%:MwEEk k “wEthwQ

d3do3aZs 40 AL m_>_ZD
O m dd93ZS WNYVILNIIOS SVYLISH3IAINN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

