
Call Paths for Pin Tools

Milind Chabbi, Xu Liu, and John Mellor-Crummey	

Department of Computer Science	

Rice University	

CGO'14, Orlando, FL	

February 17, 2014

Milind Chabbi Call Paths for Pin ToolsMilind Chabbi Call Paths for Pin Tools

What is a Call Path ?

Chain of function calls that led to the current point in the program.
(a.k.a Calling Context / Call Stack / Backtrace / Activation Record)

Foo() {
 x = *ptr;}

main()

A()

B()

Milind Chabbi Call Paths for Pin ToolsMilind Chabbi Call Paths for Pin Tools

What is a Call Path ?

Chain of function calls that led to the current point in the program.
(a.k.a Calling Context / Call Stack / Backtrace / Activation Record)

Foo() {
 x = *ptr;}

main()

A()

B() Debuggers

Performance Analysis Tools

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Attribute each conflicting
access to its full call path

Thread 1 Thread 2

…

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Attribute distance
between “use” and

“reuse” to references in
full context

[Liu et al. ISPASS’13]

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

…

Attribute distance
between “use” and

“reuse” to references in
full context

[Liu et al. ISPASS’13]

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Milind Chabbi Call Paths for Pin Tools

• Correctness
✦ Data race detection
✦ Taint analysis
✦ Array out of bound detection

• Performance
✦ Reuse-distance analysis
✦ Cache simulation
✦ False sharing detection
✦ Redundancy detection (e.g. dead writes)

• Other tools
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools

Milind Chabbi Call Paths for Pin Tools

State-of-the-art in Collecting Ubiquitous Call Paths

“It will slow down execution by a factor of several
thousand compared to native execution -- I'd guess --

so you'll wind up with something that is unusably slow
on anything except the smallest problems.”

!
“If you tried to invoke Thread::getCallStack on every

memory access there would be very serious
performance problems … your program would probably

never reach main.”

No support for collecting calling contexts

Milind Chabbi Call Paths for Pin Tools

State-of-the-art in Collecting Ubiquitous Call Paths

“It will slow down execution by a factor of several
thousand compared to native execution -- I'd guess --

so you'll wind up with something that is unusably slow
on anything except the smallest problems.”

!
“If you tried to invoke Thread::getCallStack on every

memory access there would be very serious
performance problems … your program would probably

never reach main.”

We built one ourselves—CCTLib

No support for collecting calling contexts

Milind Chabbi Call Paths for Pin Tools

Roadmap

• Ubiquitous call path collection
• Attributing costs to data objects
• Evaluation
• Conclusions

CCTLib

Milind Chabbi Call Paths for Pin Tools

Roadmap

• Ubiquitous call path collection
• Attributing costs to data objects
• Evaluation
• Conclusions

CCTLib

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Top Three Challenges

1 Overhead (Space)

2 Overhead (Time)

3 Overhead (Parallel scaling)

Milind Chabbi Call Paths for Pin Tools

Store History of Contexts Compactly

Problem:
Deluge of call paths

Milind Chabbi Call Paths for Pin Tools

Store History of Contexts Compactly

Problem:
Deluge of call paths

A A A A
B B C C
D E F G

Instruction stream

Milind Chabbi Call Paths for Pin Tools

Store History of Contexts Compactly

Problem:
Deluge of call paths

A A A A
B B C C
D E F G

Instruction stream

Milind Chabbi Call Paths for Pin Tools

Store History of Contexts Compactly

Problem:
Deluge of call paths

A A A A
B B C C
D E F G

Instruction stream

Milind Chabbi Call Paths for Pin Tools

Store History of Contexts Compactly

Problem:
Deluge of call paths

A A A A
B B C C
D E F G

Instruction stream
Instruction stream

Solution
• Call paths share 

common prefix
• Store call paths as a

calling context tree (CCT)
• One CCT per thread

A
B C

D E F G

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Problem:
Unwinding overhead

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Problem:
Unwinding overhead

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Problem:
Unwinding overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead

Main()

P()

Main()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

CTXT

Problem:
Unwinding overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead
Problem:

Unwinding overhead

Main()

P()

call

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

CTXT
Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead
Problem:

Unwinding overhead

Main()

P()

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

CTXT

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead
Problem:

Unwinding overhead

Main()

P()

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

CTXT

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

call

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Tools can obtain !
pointer to the !

current context !
via “CTXT” !

in constant time
CTXT

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead
Problem:

Unwinding overhead

Main()

P()

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

CTXT

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

return

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Tools can obtain !
pointer to the !

current context !
via “CTXT” !

in constant time
CTXT

Milind Chabbi Call Paths for Pin Tools

Shadow Stack to Avoid Unwinding Overhead
Problem:

Unwinding overhead

Main()

P()

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

CTXT

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Z()

call

Main()

P()

Foo() {
 *ptr =

100;
 x = 42;}

*ptr = 100;

x = 42; }

Tools can obtain !
pointer to the !

current context !
via “CTXT” !

in constant time
CTXT

Milind Chabbi Call Paths for Pin Tools

Maintaining CONTE

Main()

P()

Z()W() …CTXT

CTXT

Milind Chabbi Call Paths for Pin Tools

Maintaining CONTE

Return to caller:
Constant time update

Main()

P()

Z()W() …

CTXT

CTXT

Milind Chabbi Call Paths for Pin Tools

CTXTCTXT

Main()

P()

Z()W() …

Maintaining CONTECTXT

Milind Chabbi Call Paths for Pin Tools

CTXTCTXT

Finding a callee from its caller
involves a lookup

X() Z()W() Y()

P()CTXT

Main()

P()

Z()W() …

Maintaining CONTECTXT

Milind Chabbi Call Paths for Pin Tools

CTXTCTXT

Finding a callee from its caller
involves a lookup

X() Z()W() Y()

P()CTXT

Main()

P()

Z()W() …

Maintaining CONTECTXT

Milind Chabbi Call Paths for Pin Tools

CTXTCTXT

Finding a callee from its caller
involves a lookup

X() Z()W() Y()

P()

CTXT

Main()

P()

Z()W() …

Maintaining CONTECTXT

Milind Chabbi Call Paths for Pin Tools

Accelerate Lookup with Splay Trees

P()

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

CTXT

X() Z()W() Y()

Milind Chabbi Call Paths for Pin Tools

Accelerate Lookup with Splay Trees

P()

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

CTXTX() Z()W() Y()

Milind Chabbi Call Paths for Pin Tools

Accelerate Lookup with Splay Trees

P()

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

CTXT

X() Z()W() Y()

Milind Chabbi Call Paths for Pin Tools

Accelerate Lookup with Splay Trees

P()

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

CTXT

X() Z()W() Y()

Milind Chabbi Call Paths for Pin Tools

Accelerate Lookup with Splay Trees

P()

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

X() Z()W() Y()

CTXT

Milind Chabbi Call Paths for Pin Tools

Accelerate Lookup with Splay Trees

P()

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

X() Z()W() Y()CTXT

Milind Chabbi Call Paths for Pin Tools

Context Should Incorporate Instruction Pointer

main()

Foo(){

P()

*ptr = 100;

x = 42; }

Milind Chabbi Call Paths for Pin Tools

Context Should Incorporate Instruction Pointer

main()

Foo(){

P()

*ptr = 100;

x = 42; }

CTXT = Foo: INS 1

Milind Chabbi Call Paths for Pin Tools

Context Should Incorporate Instruction Pointer

main()

Foo(){

P()

*ptr = 100;

x = 42; }

CTXT = Foo: INS 1

CTXT = Foo: INS 2

Milind Chabbi Call Paths for Pin Tools
CTXT

21 5

Attributing to Instructions

A CCT node represents  
a Pin trace
✦ CCTLib maintains node ➞ Pin

trace mapping
✦ Each slot in a node represents an

instruction in a Pin trace
Foo()

3 4 6

P()

main()

CCTNode

Instructions

Milind Chabbi Call Paths for Pin Tools

21 5

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

main()

CCTNode

Instructions

CTXT

Milind Chabbi Call Paths for Pin Tools

211 5

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

CTXT

main()

CCTNode

Instructions

CTXT

Milind Chabbi Call Paths for Pin Tools

21 5

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

CTXT

main()

CCTNode

Instructions
2 CTXT

GetContext(2)

Milind Chabbi Call Paths for Pin Tools

21 5

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

CTXT

main()

CCTNode

Instructions
2 CTXT

Milind Chabbi Call Paths for Pin Tools

21 5

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

CTXT

main()

CCTNode

Instructions

CTXT3

Milind Chabbi Call Paths for Pin Tools

21 55

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

CTXT

main()

CCTNode

Instructions

CTXT

GetContext(5)

Milind Chabbi Call Paths for Pin Tools

21 55

Attributing to Instructions

• Problem: Mapping IP to Slot
at runtime
✦ Variable size x86 instructions
✦ Non-sequential control flow

• Solution:
✦ Pin’s trace-instrumentation to

hardwire Slot# as argument to
context query routine for an IP

• Result:
✦ Constant time to query

Foo()

3 4 6

P()

CTXT

main()

CCTNode

Instructions

CTXT

Milind Chabbi Call Paths for Pin Tools

Roadmap

• Ubiquitous call path collection
• Attributing costs to data objects
• Evaluation
• Conclusions

CCTLib

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution in CCTLib
int MyArray[SZ];
!
int * Create(){
 return malloc(…);
}
!
void Update(int * ptr) {
 for(…)
 ptr[i]++;
}
!
int main(){
 int * p;
 if (…)
 p = Create();
 else
 p = MyArray;
 Update(p);
}

Main()

Create()

malloc()

Update()

• Associate each data access to
its data object

• Data object
✦ Dynamic allocation:  

Call path of allocation site
✦ Static objects: Variable name

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution

• How ?
✦ Record all <AddressRange, VariableName> tuples in a map
✦ Instrument all allocation/free routines and maintain

<AddressRange, CallPath> tuples in the map
✦ At each memory access: search the map for the address

!

• Problems
✦ Searching the map on each access is expensive
✦ Map needs to be concurrent for threaded programs

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using a Balanced Tree

• Observation:
✦ Updates to the map are infrequent
✦ Lookups in the maps are frequent
!

• Solution #1: sorted map
✦ Keep <AddressRange, Object> in a balanced binary tree
✦ Low memory cost—O(N)
✦ Moderate lookup cost—O(log N)
✦ Concurrent access is handled by a novel replicated tree data

structure

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using Shadow Memory

• Solution #2: shadow memory
Application CCTLib

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using Shadow Memory

ObjA

• Solution #2: shadow memory
Application CCTLib

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using Shadow Memory

ObjA ObjA ObjA ObjA

ObjA ObjA ObjA ObjA

ObjA

• Solution #2: shadow memory
Application CCTLib

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using Shadow Memory

ObjA ObjA ObjA ObjA

ObjA ObjA ObjA ObjA

ObjB ObjB ObjB ObjB

ObjC ObjC ObjC ObjC

ObjA
ObjB

ObjC

• Solution #2: shadow memory
Application CCTLib

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using Shadow Memory

ObjA ObjA ObjA ObjA

ObjA ObjA ObjA ObjA

ObjB ObjB ObjB ObjB

ObjC ObjC ObjC ObjC

ObjA
ObjB

ObjC

• Solution #2: shadow memory
Application CCTLib

Milind Chabbi Call Paths for Pin Tools

Data-Centric Attribution using Shadow Memory

• For each memory cell, a shadow cell holds a handle for
the memory cell’s data object
✦ Low lookup cost—O(1), high memory cost—
✦ Shadow memory supports concurrent access

• CCTLib supports both solutions, clients can choose

ObjA ObjA ObjA ObjA

ObjA ObjA ObjA ObjA

ObjB ObjB ObjB ObjB

ObjC ObjC ObjC ObjC

ObjA
ObjB

ObjC

• Solution #2: shadow memory
Application CCTLib

Milind Chabbi Call Paths for Pin Tools

Roadmap

• Ubiquitous call path collection
• Attributing costs to data objects
• Evaluation
• Conclusions

CCTLib

Milind Chabbi Call Paths for Pin Tools

Evaluation

Program Running time !
in sec

astr 361
bzip2 161
gcc 70

h264ref 618
hmmer 446

libquantum 462
mcf 320

omnetpp 352
Xalan 295
ROSE 24

LAMMPS 99
LULESH 67

Experimental setup:
• 2.2GHz Intel Sandy Bridge
• 128GB DDR3
• GNU 4.4.6 tool chain

Milind Chabbi Call Paths for Pin Tools

Evaluation

Program Running time !
in sec

astr 361
bzip2 161
gcc 70

h264ref 618
hmmer 446

libquantum 462
mcf 320

omnetpp 352
Xalan 295
ROSE 24

LAMMPS 99
LULESH 67

Spec Int 2006 reference
benchmark Experimental setup:

• 2.2GHz Intel Sandy Bridge
• 128GB DDR3
• GNU 4.4.6 tool chain

Milind Chabbi Call Paths for Pin Tools

Evaluation

Program Running time !
in sec

astr 361
bzip2 161
gcc 70

h264ref 618
hmmer 446

libquantum 462
mcf 320

omnetpp 352
Xalan 295
ROSE 24

LAMMPS 99
LULESH 67

Source-to-source compiler from LLNL!
3M LOC compiling 70K LOC

Deep call chains

Spec Int 2006 reference
benchmark Experimental setup:

• 2.2GHz Intel Sandy Bridge
• 128GB DDR3
• GNU 4.4.6 tool chain

Milind Chabbi Call Paths for Pin Tools

Evaluation

Program Running time !
in sec

astr 361
bzip2 161
gcc 70

h264ref 618
hmmer 446

libquantum 462
mcf 320

omnetpp 352
Xalan 295
ROSE 24

LAMMPS 99
LULESH 67

Source-to-source compiler from LLNL!
3M LOC compiling 70K LOC

Deep call chains

Molecular dynamics code!
500K LOC

Deep call chains
Multithreaded

Spec Int 2006 reference
benchmark Experimental setup:

• 2.2GHz Intel Sandy Bridge
• 128GB DDR3
• GNU 4.4.6 tool chain

Milind Chabbi Call Paths for Pin Tools

Evaluation

Program Running time !
in sec

astr 361
bzip2 161
gcc 70

h264ref 618
hmmer 446

libquantum 462
mcf 320

omnetpp 352
Xalan 295
ROSE 24

LAMMPS 99
LULESH 67

Hydrodynamics mini-app from LLNL!
Frequent data allocation and de-allocations

Memory bound
Multithreaded, Poor scaling

Source-to-source compiler from LLNL!
3M LOC compiling 70K LOC

Deep call chains

Molecular dynamics code!
500K LOC

Deep call chains
Multithreaded

Spec Int 2006 reference
benchmark Experimental setup:

• 2.2GHz Intel Sandy Bridge
• 128GB DDR3
• GNU 4.4.6 tool chain

Milind Chabbi Call Paths for Pin Tools

Overhead Analysis

Call path
collection

!

Time overhead
relative to original

program
(Null Pin tool)

30x 4.5x

Time overhead
relative to simple

instruction
counting Pin tool

1.7x 2.0x

Memory overhead
relative to original

program
1.8x

Data-centric attribution

Balanced Tree Shadow Memory

Milind Chabbi Call Paths for Pin Tools

Overhead Analysis

Call path
collection

!

Time overhead
relative to original

program
(Null Pin tool)

30x 4.5x

Time overhead
relative to simple

instruction
counting Pin tool

1.7x 2.0x

Memory overhead
relative to original

program
1.8x

Data-centric attribution

Balanced Tree Shadow Memory

Milind Chabbi Call Paths for Pin Tools

Overhead Analysis

Call path
collection

!

Time overhead
relative to simple

instruction
counting Pin tool

1.7x 4.5x 2.3x

Memory overhead
relative to original

program
1.8x 2.0x 11x

Data-centric attribution

Balanced Tree Shadow Memory

Milind Chabbi Call Paths for Pin Tools

Overhead Analysis

Call path
collection

!

Time overhead
relative to simple

instruction
counting Pin tool

1.7x 4.5x 2.3x

Memory overhead
relative to original

program
1.8x 2.0x 11x

Data-centric attribution

Balanced Tree Shadow Memory

Milind Chabbi Call Paths for Pin Tools

CCTLib Scales to Multiple Threads
CCTLib overhead of N threads:

CCTLib scalability of N threads:

Higher scalability is better, 1.0 is ideal

Emon(n)
Eorig(n)

Overhead(1)
Overhead(N)

CCTLib scalability
on LAMMPS Sc

al
ab

ili
ty

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Number of threads

1 2 4 8 16 32Call path collection
Data-centric attribution via Sorted maps
Data-centric attribution via Shadow memoory

Milind Chabbi Call Paths for Pin Tools

Conclusions
• Many tools can benefit from attributing metrics to full

calling contexts and/or data objects
• Ubiquitous calling context collection was previously

considered prohibitively expensive
• Fine-grain attribution of metrics to calling contexts and

data objects is practical
• Full-precision call path collection and data-centric

attribution require only modest space and time
overhead
✦ Choice of algorithms and data structures was a key to success

Milind Chabbi Call Paths for Pin Tools

Conclusions
• Many tools can benefit from attributing metrics to full

calling contexts and/or data objects
• Ubiquitous calling context collection was previously

considered prohibitively expensive
• Fine-grain attribution of metrics to calling contexts and

data objects is practical
• Full-precision call path collection and data-centric

attribution require only modest space and time
overhead
✦ Choice of algorithms and data structures was a key to success

Milind Chabbi Call Paths for Pin Tools

Conclusions
• Many tools can benefit from attributing metrics to full

calling contexts and/or data objects
• Ubiquitous calling context collection was previously

considered prohibitively expensive
• Fine-grain attribution of metrics to calling contexts and

data objects is practical
• Full-precision call path collection and data-centric

attribution require only modest space and time
overhead
✦ Choice of algorithms and data structures was a key to success

http://code.google.com/p/cctlib/

https://code.google.com/p/cctlib/

Milind Chabbi Call Paths for Pin Tools

Other Complications in Real Programs

• Complex control flow
✦ Signal handling
✦ Setjmp-Longjmp
✦ C++ exceptions (try-catch)

!

• Thread creation and destruction
✦ Maintaining parent-child relationships between threads
✦ Scalability to large number of threads

