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What is a Call Path ?

Chain of function calls that led to the current point in the program.  
(a.k.a Calling Context / Call Stack / Backtrace / Activation Record)

Foo() { 
 x = *ptr;}

main()

A()

B()
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(a.k.a Calling Context / Call Stack / Backtrace / Activation Record)

Foo() { 
 x = *ptr;}

main()

A()

B() Debuggers

Performance Analysis Tools
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• Correctness 
✦ Data race detection 
✦ Taint analysis  
✦ Array out of bound detection 

• Performance 
✦ Reuse-distance analysis 
✦ Cache simulation 
✦ False sharing detection 
✦ Redundancy detection (e.g. dead writes) 

• Other tools 
✦ Debugging, testing, resiliency, replay, etc.

Need: Ubiquitous Call Paths
Fine-grained monitoring tools
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State-of-the-art in Collecting Ubiquitous Call Paths

“It will slow down execution by a factor of several 
thousand compared to native execution -- I'd guess -- 

so you'll wind up with something that is unusably slow 
on anything except the smallest problems.”

!
“If you tried to invoke Thread::getCallStack on every 

memory access there would be very serious 
performance problems … your program would probably 

never reach main.”

No support for collecting calling contexts
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State-of-the-art in Collecting Ubiquitous Call Paths

“It will slow down execution by a factor of several 
thousand compared to native execution -- I'd guess -- 

so you'll wind up with something that is unusably slow 
on anything except the smallest problems.”

!
“If you tried to invoke Thread::getCallStack on every 

memory access there would be very serious 
performance problems … your program would probably 

never reach main.”

We built one ourselves—CCTLib

No support for collecting calling contexts
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Store History of Contexts Compactly

Problem:  
Deluge of call paths

A A A A
B B C C
D E F G

Instruction stream
Instruction stream

Solution 
• Call paths share 

common prefix 
• Store call paths as a 

calling context tree (CCT) 
• One CCT per thread

A
B C

D E F G
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      *ptr = 

100; 
   x = 42;}

*ptr = 100;

x = 42; }

Problem:  
Unwinding overhead
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main()

Foo(){

P()

*ptr = 100;

x = 42; }

CTXT = Foo: INS 1

CTXT = Foo: INS 2
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CTXT

21 5

Attributing to Instructions

A CCT node represents  
a Pin trace 
✦ CCTLib maintains node ➞ Pin 

trace mapping 
✦ Each slot in a node represents an 

instruction in a Pin trace
Foo()

3 4 6

P()

main()

CCTNode

Instructions
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Data-Centric Attribution in CCTLib
int MyArray[SZ]; 
!
int * Create(){ 
 return malloc(…); 
} 
!
void Update(int * ptr) { 
 for( … ) 
  ptr[i]++; 
} 
!
int main(){ 
 int * p; 
   if (…) 
  p = Create(); 
 else  
  p = MyArray; 
 Update(p); 
}

Main()

Create()

malloc()

Update()

• Associate each data access to 
its data object 

• Data object 
✦ Dynamic allocation:  

Call path of allocation site 
✦ Static objects: Variable name
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Data-Centric Attribution

• How ? 
✦ Record all <AddressRange, VariableName> tuples in a map 
✦ Instrument all allocation/free routines and maintain       

<AddressRange, CallPath> tuples in the map 
✦ At each memory access: search the map for the address 

!

• Problems 
✦ Searching the map on each access is expensive 
✦ Map needs to be concurrent for threaded programs
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Data-Centric Attribution using a Balanced Tree

• Observation:  
✦ Updates to the map are infrequent 
✦ Lookups in the maps are frequent 
!

• Solution #1: sorted map 
✦ Keep <AddressRange, Object> in a balanced binary tree 
✦ Low memory cost—O(N) 
✦ Moderate lookup cost—O(log N) 
✦ Concurrent access is handled by a novel replicated tree data 

structure
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Data-Centric Attribution using Shadow Memory

• Solution #2: shadow memory
Application CCTLib
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Data-Centric Attribution using Shadow Memory

• For each memory cell, a shadow cell holds a handle for 
the memory cell’s data object 
✦ Low lookup cost—O(1), high memory cost— 
✦ Shadow memory supports concurrent access 

• CCTLib supports both solutions, clients can choose

ObjA ObjA ObjA ObjA

ObjA ObjA ObjA ObjA

ObjB ObjB ObjB ObjB

ObjC ObjC ObjC ObjC

ObjA
ObjB

ObjC

• Solution #2: shadow memory
Application CCTLib
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Evaluation

Program Running time !
in sec

astr 361
bzip2 161
gcc 70

h264ref 618
hmmer 446

libquantum 462
mcf 320

omnetpp 352
Xalan 295
ROSE 24

LAMMPS 99
LULESH 67

Experimental setup: 
• 2.2GHz Intel Sandy Bridge 
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CCTLib Scales to Multiple Threads
CCTLib overhead of N threads:                                 

CCTLib scalability of N threads:

Higher scalability is better, 1.0 is ideal

Emon(n)
Eorig(n)

Overhead(1)
Overhead(N)

CCTLib scalability  
on LAMMPS Sc

al
ab
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ty
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1 2 4 8 16 32Call path collection
Data-centric attribution via Sorted maps
Data-centric attribution via Shadow memoory 
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Conclusions
• Many tools can benefit from attributing metrics to full 

calling contexts and/or data objects 
• Ubiquitous calling context collection was previously 

considered prohibitively expensive 
• Fine-grain attribution of metrics to calling contexts and 

data objects is practical 
• Full-precision call path collection and data-centric 

attribution require only modest space and time 
overhead 
✦ Choice of algorithms and data structures was a key to success
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Other Complications in Real Programs

• Complex control flow 
✦ Signal handling 
✦ Setjmp-Longjmp 
✦ C++ exceptions (try-catch) 

!

• Thread creation and destruction 
✦ Maintaining parent-child relationships between threads 
✦ Scalability to large number of threads


