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Motivations
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Motivation : Profile Driven Feedback (PDF)

 Drastically improves performance in dynamic languages
–Have seen 60% on some typical Java benchmarks

 Transparent to the user in dynamic languages
–Static languages (generally) have to do a training run

 Allows for greatly increased performance of some optimizations:
–Devirtualization
–Inlining
–Block ordering
–Other value profiling based optimizations

 Profiling can be done by instrumenting compiled code or in the interpreter
–Called JIT profiling if done in compiled code
–Called interpreter profiling if done in the interpreter
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A Typical Benchmark Profile - SPECjbb2005

Top 15 compiled methods make up 80% of the 
profile.  Nearly 1000 remaining make up 20%
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J9 JIT Profiling

foo() foo() foo'()

 IBM's J9 VM implements profiling as described in Arnold and Ryder's paper “A 
Framework for Reducing Cost of Instrumented Code”

– Replicate method body, instrument it, with various control flow points back 
to original body

 Excellent for capturing peaked profiles

 Recompilation is necessary!
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Profile for WebSphere Application Server 8.5 running DayTrader

Average of 0.009% / method

Top 15 compiled methods take 13% of the time.
Remaining 9800 take 87%.
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The solution: Interpreter Profiling

 J9 has mixed-mode execution
–Methods begin interpreted
–Frequently executed methods are compiled

 Collects profiling information without resorting to “mass” recompilation

 Introduces a new problem: interpreter profiling overhead during 
JVM start-up

Many customers care about startup time!
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Normalized Throughput Results with Initial Interpreter Profiling

DayTrader compiler.compile serial sunflow xml.transform scimark.fft.large
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(Higher is better)

JIT profiling obviates the need for Interpreter profiling
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WAS-startup startup.compiler.compile startup.serial startup.sunflow startup.xml.transform startup.scimark.fft
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Effect of Interpreter Profiling on Startup Time

(Lower is better)
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Interpreter Profiler Design
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J9 Interpreter Profiler Design

 Application threads use buffered approach to  collect data

…….

Application Thread 1 Application Thread N

if

call

if

call

call

if

checkcast

switch

Per-thread Profiling buffer Per-thread Profiling buffer
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J9 Interpreter Profiler Design

 The JIT runtime processes the data on the application threads and populates 
an internal global data structure

 Processing triggered by a buffer full event

Global JIT profiling hashtable

data

Bytecode 
program counter

Per-thread Profiling buffer

Process sample

data

Bytecode 
program counter

Per-thread Profiling buffer

Process sample
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J9 Interpreter Profiler Design

 JIT compiler consults the profiling hashtable in various stages of compilation

Global JIT profiling hashtable

…….

Compilation Thread

Devirtualize

Inline

Order blocks
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J9 Interpreter Profiler Implementation Details

 Data collected:
– Branch direction
– Virtual call targets
– Switch statements
– Instanceof and checkcast runtime types

 Sources of overhead: 
–Populate the per-thread interpreter profiler buffer ( 4% )
–Scanning the buffer (4%) 
–Process and populate the global hash table (92%) 
–Compilation thread consulting the global hash table (negligible)
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Distribution of Raw Interpreter Profiling Data

 Raw data consists of over 50% branches

Branch Invoke Checkcast Switch
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Distribution of Processed Interpreter Profiling Data

 Processed data is dominated by invoke and checkcast information

 Suggests branches are re-executed more times than calls

branch Invoke /checkcast switch
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Optimizations
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Optimization: Remove synchronization

 Global hash table is accessed and updated by multiple threads

 Common Solutions to ensure correctness:
– Lock / mutex
– Read/Write lock
– Lock striping (ex: java/util/ConcurrentHashMap)
– Lock free (non-blocking) hash table

 Problem: All these solutions rely on (expensive) hardware atomic operations

 Constraints:
– Insertion involves carefully crafted sequence of operations
– No deletions
– Do not re-size

 Implications:
– Contention between threads when adding entry could result in lost entry

Problem 1: Synchronization overhead on global hash table
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Problem 2: Buffer processing done on application threads

 Drawback: Application thread pauses while buffer processing occurs

 Benefits:
–Asynchronous model: threads do not pause for processing
–Hide overhead on multi-cpu machines

 More opportunities for tuning:
–Thread pool size
–Drop buffers
–Option to delegate buffer processing back to application threads

Optimization: Dedicated interpreter profiling processing thread pool
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Problem 3: Over abundance of branch entries in buffers

Branch bias is the important piece of data to drive block ordering

Branch frequency of lesser importance

Benefit:
–Reduces time spent processing entries
–Skipping raw record in a random fashion ensures branch bias is 

not affected
Does not improve footprint

Optimization: Skip processing branch buffer records in random fashion
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Problem 4: Not all profiling information is used

 Some methods are not executed frequently enough to warrant compilation

 Each compiled method has an excess of profiling information

 Profile only last 'N' invocations of a method
 'N' tuned based on application characteristics
 Benefits:

–Reduces time spent processing entries by reducing number of entries 
generated

–Footprint savings of around 50% by reducing little-used entries
• Resizing of global hash table is less important

–Bias profiling information to just before compilation

Optimization: reduce time spent profiling a method
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Problem 5: Expensive validity check caused by class unloading

 Class unloading in Java:
– An optimization to help reduce memory use
– A class may be unloaded if its defining class loader may be reclaimed by the 

garbage collector
– Memory used by class is freed (including loaded bytecodes of the methods)

 Possible interactions with interpreter profiling:
– Processed profiling data may come from an unloaded class
– Processed profiling data may refer to an unloaded class

 Problem: each entry needs to be checked for validity before being accessed
– This validity check is very expensive!

 Idea: Can avoid validity check if no class unloading has happened since 
last validity check.

– Add a version ID to each hash table entry
– Compare entry version ID to current global version ID
– Store global version ID in entry version ID when entry is validated

Optimization: reduce times validity check needs to be performed
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Problem 6: Continuous profiling

 Some applications continuously generate new profiling information

 Common in many flat-profile applications:
–Example: rules based application that uses reflection API

 Results in a throughput penalty at steady state

Stop profiling when interpreter's share of time is below certain 
threshold

Phase change detection necessary to re-enable profiling
Applications discussed in this presentation do not exhibit this 

behaviour

Optimization : stop profiling when benefit is small
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Normalized Startup Results

 For enterprise-class applications: class unload optimization has biggest impact, followed by 
eliminating synchronization

 For general applications: eliminating synchronization has biggest impact

WAS-startup
startup.compiler.compile

startup.serial
startup.sunflow

startup.xml.transform
startup.scimark.fft
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Impact of overhead reduced from maximum of 57% to 2%

(lower is better)
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Normalized Throughput Results

 Throughput improves by 58% running Websphere Application Server

DayTrader compiler.compile serial sunflow xml.transform scimark.fft.large
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Summary

Profile Driven Feedback is a necessity in any production JVM
–Throughput performance benefits up to 58%

Unique characteristics of flat profile applications make interpreter profiling an 
especially effective solution to generate profiling data

 Interpreter profiling overhead can degrade application startup time significantly

Optimizations reduce interpreter profiling overhead:
–No synchronization on global profiling data structure
–Separate thread for processing buffers
–Skip processing branches in buffers
–Only profile last 'N' invocations of a method
–Class unload optimization
–Turning off interpreter profiling once steady state is reached

 Initial startup overhead of 57% can be reduced down to a few percent without 
any throughput loss
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Questions?
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