
© 2013 IBM Corporation

Experiences Designing a Robust and
Scalable Interpreter Profiling Framework

Ian Gartley, Nikola Grcevski, Marius Pirvu, Vijay Sundaresan

IBM Canada

© 2013 IBM Corporation

Motivations

© 2013 IBM Corporation

Motivation : Profile Driven Feedback (PDF)

 Drastically improves performance in dynamic languages
–Have seen 60% on some typical Java benchmarks

 Transparent to the user in dynamic languages
–Static languages (generally) have to do a training run

 Allows for greatly increased performance of some optimizations:
–Devirtualization
–Inlining
–Block ordering
–Other value profiling based optimizations

 Profiling can be done by instrumenting compiled code or in the interpreter
–Called JIT profiling if done in compiled code
–Called interpreter profiling if done in the interpreter

© 2013 IBM Corporation

A B C D E F G H I J K L M N O Remaining
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Method

%
 C

P
U

A Typical Benchmark Profile - SPECjbb2005

Top 15 compiled methods make up 80% of the
profile. Nearly 1000 remaining make up 20%

© 2013 IBM Corporation

J9 JIT Profiling

foo() foo() foo'()

 IBM's J9 VM implements profiling as described in Arnold and Ryder's paper “A
Framework for Reducing Cost of Instrumented Code”

– Replicate method body, instrument it, with various control flow points back
to original body

 Excellent for capturing peaked profiles

 Recompilation is necessary!

© 2013 IBM Corporation

A B C D E F G H I J K L M N O Remaining
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Method

%
 C

P
U

Profile for WebSphere Application Server 8.5 running DayTrader

Average of 0.009% / method

Top 15 compiled methods take 13% of the time.
Remaining 9800 take 87%.

© 2013 IBM Corporation

The solution: Interpreter Profiling

 J9 has mixed-mode execution
–Methods begin interpreted
–Frequently executed methods are compiled

 Collects profiling information without resorting to “mass” recompilation

 Introduces a new problem: interpreter profiling overhead during
JVM start-up

Many customers care about startup time!

© 2013 IBM Corporation

Normalized Throughput Results with Initial Interpreter Profiling

DayTrader compiler.compile serial sunflow xml.transform scimark.fft.large
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(Higher is better)

JIT profiling obviates the need for Interpreter profiling

© 2013 IBM Corporation

WAS-startup startup.compiler.compile startup.serial startup.sunflow startup.xml.transform startup.scimark.fft
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Effect of Interpreter Profiling on Startup Time

(Lower is better)

© 2013 IBM Corporation

Interpreter Profiler Design

© 2013 IBM Corporation

J9 Interpreter Profiler Design

 Application threads use buffered approach to collect data

…….

Application Thread 1 Application Thread N

if

call

if

call

call

if

checkcast

switch

Per-thread Profiling buffer Per-thread Profiling buffer

© 2013 IBM Corporation

J9 Interpreter Profiler Design

 The JIT runtime processes the data on the application threads and populates
an internal global data structure

 Processing triggered by a buffer full event

Global JIT profiling hashtable

data

Bytecode
program counter

Per-thread Profiling buffer

Process sample

data

Bytecode
program counter

Per-thread Profiling buffer

Process sample

© 2013 IBM Corporation

J9 Interpreter Profiler Design

 JIT compiler consults the profiling hashtable in various stages of compilation

Global JIT profiling hashtable

…….

Compilation Thread

Devirtualize

Inline

Order blocks

© 2013 IBM Corporation

J9 Interpreter Profiler Implementation Details

 Data collected:
– Branch direction
– Virtual call targets
– Switch statements
– Instanceof and checkcast runtime types

 Sources of overhead:
–Populate the per-thread interpreter profiler buffer (4%)
–Scanning the buffer (4%)
–Process and populate the global hash table (92%)
–Compilation thread consulting the global hash table (negligible)

© 2013 IBM Corporation

Distribution of Raw Interpreter Profiling Data

 Raw data consists of over 50% branches

Branch Invoke Checkcast Switch

© 2013 IBM Corporation

Distribution of Processed Interpreter Profiling Data

 Processed data is dominated by invoke and checkcast information

 Suggests branches are re-executed more times than calls

branch Invoke /checkcast switch

© 2013 IBM Corporation

Optimizations

© 2013 IBM Corporation

Optimization: Remove synchronization

 Global hash table is accessed and updated by multiple threads

 Common Solutions to ensure correctness:
– Lock / mutex
– Read/Write lock
– Lock striping (ex: java/util/ConcurrentHashMap)
– Lock free (non-blocking) hash table

 Problem: All these solutions rely on (expensive) hardware atomic operations

 Constraints:
– Insertion involves carefully crafted sequence of operations
– No deletions
– Do not re-size

 Implications:
– Contention between threads when adding entry could result in lost entry

Problem 1: Synchronization overhead on global hash table

© 2013 IBM Corporation

Problem 2: Buffer processing done on application threads

 Drawback: Application thread pauses while buffer processing occurs

 Benefits:
–Asynchronous model: threads do not pause for processing
–Hide overhead on multi-cpu machines

 More opportunities for tuning:
–Thread pool size
–Drop buffers
–Option to delegate buffer processing back to application threads

Optimization: Dedicated interpreter profiling processing thread pool

© 2013 IBM Corporation

Problem 3: Over abundance of branch entries in buffers

Branch bias is the important piece of data to drive block ordering

Branch frequency of lesser importance

Benefit:
–Reduces time spent processing entries
–Skipping raw record in a random fashion ensures branch bias is

not affected
Does not improve footprint

Optimization: Skip processing branch buffer records in random fashion

© 2013 IBM Corporation

Problem 4: Not all profiling information is used

 Some methods are not executed frequently enough to warrant compilation

 Each compiled method has an excess of profiling information

 Profile only last 'N' invocations of a method
 'N' tuned based on application characteristics
 Benefits:

–Reduces time spent processing entries by reducing number of entries
generated

–Footprint savings of around 50% by reducing little-used entries
• Resizing of global hash table is less important

–Bias profiling information to just before compilation

Optimization: reduce time spent profiling a method

© 2013 IBM Corporation

Problem 5: Expensive validity check caused by class unloading

 Class unloading in Java:
– An optimization to help reduce memory use
– A class may be unloaded if its defining class loader may be reclaimed by the

garbage collector
– Memory used by class is freed (including loaded bytecodes of the methods)

 Possible interactions with interpreter profiling:
– Processed profiling data may come from an unloaded class
– Processed profiling data may refer to an unloaded class

 Problem: each entry needs to be checked for validity before being accessed
– This validity check is very expensive!

 Idea: Can avoid validity check if no class unloading has happened since
last validity check.

– Add a version ID to each hash table entry
– Compare entry version ID to current global version ID
– Store global version ID in entry version ID when entry is validated

Optimization: reduce times validity check needs to be performed

© 2013 IBM Corporation

Problem 6: Continuous profiling

 Some applications continuously generate new profiling information

 Common in many flat-profile applications:
–Example: rules based application that uses reflection API

 Results in a throughput penalty at steady state

Stop profiling when interpreter's share of time is below certain
threshold

Phase change detection necessary to re-enable profiling
Applications discussed in this presentation do not exhibit this

behaviour

Optimization : stop profiling when benefit is small

© 2013 IBM Corporation

Normalized Startup Results

 For enterprise-class applications: class unload optimization has biggest impact, followed by
eliminating synchronization

 For general applications: eliminating synchronization has biggest impact

WAS-startup
startup.compiler.compile

startup.serial
startup.sunflow

startup.xml.transform
startup.scimark.fft

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

NoIP

BaseIP

NoLock

UnloadOpt

SkipBr

Ipthread

DelayIP

S
ta

rt
u

p
 T

im
e

 (
L

o
w

e
r

is
 b

e
tte

r)

Impact of overhead reduced from maximum of 57% to 2%

(lower is better)

© 2013 IBM Corporation

Normalized Throughput Results

 Throughput improves by 58% running Websphere Application Server

DayTrader compiler.compile serial sunflow xml.transform scimark.fft.large
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

NoIP

BaseIP

NoLock

UnloadOpt

SkipBr

Ipthread

DelayIP

(higher is better)

© 2013 IBM Corporation

Summary

Profile Driven Feedback is a necessity in any production JVM
–Throughput performance benefits up to 58%

Unique characteristics of flat profile applications make interpreter profiling an
especially effective solution to generate profiling data

 Interpreter profiling overhead can degrade application startup time significantly

Optimizations reduce interpreter profiling overhead:
–No synchronization on global profiling data structure
–Separate thread for processing buffers
–Skip processing branches in buffers
–Only profile last 'N' invocations of a method
–Class unload optimization
–Turning off interpreter profiling once steady state is reached

 Initial startup overhead of 57% can be reduced down to a few percent without
any throughput loss

© 2013 IBM Corporation

Questions?

	Interpreter Profiler in Testarossa JIT
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Interpreter Profiler Design
	Slide 12
	Slide 13
	Implementation Details
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

