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Motivation

e Heterogeneous Computing has become

mainstream
o OpenCL as industry-wide standard

e High Performance Computing
o dedicated GPUs

e Desktop/Mobile Computing
o integrated GPUs
o System-on-Chips




Two main challenges

e T[ask Mapping
o Selecting the most suitable processor for a given
task.
o Partitioning workloads across processors.
o Dealing with resource contention.

e Code Generation & Tuning
o Generate low-level code from high-level languages.
m OpenCL as intermediate representation
o Optimize code for specific target architectures.
m Data layout transformations
m Parallelism mapping
H



Mapping Data-Parallel Programs to
OpenCL for Heterogeneous Systems

MP
e (Generate efficient OpenCL code
o optimize for GPU l

e OpenMP loop parallelism

e Pick target device
o at runtime
o using static & dynamic code features




Mapping Data-Parallel Programs to
OpenCL for Heterogeneous Systems
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Optimising Memory Accesses

e CPU: intra-thread locality
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e GPU: inter-thread locality

o consecutive threads access consecutive data
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Dynamic Index Reordering

e Rearrange data dynamically at runtime.
o A globally optimal data layout does not always
exist.

e May not always be beneficial:
o Cost: Data transformation
o Benefit: Improved memory accesses
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Dynamic Index Reordering
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Dynamic Index Reordering

e Data-driven heuristic to decide when the

transformation is beneficial.
o size of data structure
o #Haccesses to data structure

e using micro-benchmarks for training
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Predicting the Mapping

e Predict for the whole program whether to run

parallel sections on CPU or GPU.
o Binary decision tree classifier.

e Based on static code features.
o |nstantiated at run-time.
o Aggregated across all parallel regions.
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Creating the Decision Tree
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Experimental Methodology

e Platforms
o Intel CPU + NVIDIA GeForce
o Intel CPU + AMD Radeon
o AMD Llano APU
o Intel IvyBridge

e NAS parallel benchmark

o full suite of 8 benchmarks

e Comparison
o closest related work: OpenMPC (Lee et al.)
o hand-written OpenCL implementation (Seo et al.)



Performance Evaluation

Intel Core i7 + NVIDIA GeForce GTX 580
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Performance Evaluation (2)
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Comparison to State-of-the-Art
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e SNU: hand-coded implementation

o Seo et al. [ISWC 2011]

e OpenMPC: OpenMP to CUDA
o Lee et al. [PPoPP 2009]




Mapping Parallel Programs to
Heterogeneous Systems

e Mapping Tasks to Devices
o Machine-learning model (decision tree) using code
features.

e (Generating and optimizing device code
o Generate OpenCL from OpenMP parallel loops.
o Data transformations for good GPU performance.

e Results
o 1.67x speedup over original OpenMP code.
o 1.63x speedup over hand-coded OpenCL code.



