Portable Mapping of Data-
Parallel Programs to
OpenCL for Heterogeneous
Systems

Dominik Grewe, Zheng Wang,
Michael O'Boyle

CGO 2013, Shenzhen, China
26 February 2013

Motivation

e Heterogeneous Computing has become

mainstream
o OpenCL as industry-wide standard

e High Performance Computing
o dedicated GPUs

e Desktop/Mobile Computing
o integrated GPUs
o System-on-Chips

Two main challenges

e T[ask Mapping
o Selecting the most suitable processor for a given
task.
o Partitioning workloads across processors.
o Dealing with resource contention.

e Code Generation & Tuning
o Generate low-level code from high-level languages.
m OpenCL as intermediate representation
o Optimize code for specific target architectures.
m Data layout transformations
m Parallelism mapping
H

Mapping Data-Parallel Programs to
OpenCL for Heterogeneous Systems

MP
e (Generate efficient OpenCL code
o optimize for GPU l

e OpenMP loop parallelism

e Pick target device
o at runtime
o using static & dynamic code features

Mapping Data-Parallel Programs to
OpenCL for Heterogeneous Systems

Open Kernel Code OpenCL Code Ogi"
MP Extraction Optimisation Generation

Feature
Extraction

Y Y
ML >[Code]<
M
Model erge Program

l Features

w L‘il Output

Program

Optimising Memory Accesses

e CPU: intra-thread locality

time —»

<«— threads

e GPU: inter-thread locality

o consecutive threads access consecutive data

threads —»

<«— time

Dynamic Index Reordering

e Rearrange data dynamically at runtime.
o A globally optimal data layout does not always
exist.

e May not always be beneficial:
o Cost: Data transformation
o Benefit: Improved memory accesses

Transform
A'=>A

Transform
A=A

Dynamic Index Reordering

1.2

n coderegion1 [index reordering
@ code region 2 O remaining code

1.0

0.8

Normalized runtime
0.6

0.4

0.2

0.0

bt.S bt.W bt.A sp.S sp.W

Dynamic Index Reordering

e Data-driven heuristic to decide when the

transformation is beneficial.
o size of data structure
o #Haccesses to data structure

e using micro-benchmarks for training

&—Yes access-to-size ratio < 0.3693 No—>

I
| |
No Dynamic data structure size < 5.734e+05
Transformation |
!]
No D&namic Dynémic
Transformation Transformation

Predicting the Mapping

e Predict for the whole program whether to run

parallel sections on CPU or GPU.
o Binary decision tree classifier.

e Based on static code features.
o |nstantiated at run-time.
o Aggregated across all parallel regions.

F1 |
B 2 (O e
Dpei . F3 =

CL 4>[Code Analysis]—> ea [Decision

C5 Tree
~—_— L _3l|eru

Creating the Decision Tree

Training | >/ Optimal |
Runs Devices \

“ > <>
ad -
S 3 Decision
Training g‘ g' Tree
Programs

_.[

Feature .
Extraction .

Program Features

Experimental Methodology

e Platforms
o Intel CPU + NVIDIA GeForce
o Intel CPU + AMD Radeon
o AMD Llano APU
o Intel IvyBridge

e NAS parallel benchmark

o full suite of 8 benchmarks

e Comparison
o closest related work: OpenMPC (Lee et al.)
o hand-written OpenCL implementation (Seo et al.)

Performance Evaluation

Intel Core i7 + NVIDIA GeForce GTX 580

~ O Intel Core i7 (OpenMp) 178X 73X 76x 78x 78x;
~_| @ NVIDIA GeForce (OpenCL)
| W Predictive Model :
Q. — @ Oracle :
Q) - :v—w = — r— -
S - !
o)) = :
<+ :
o~ HA
o :
< 0 0O N =2 €< 00 u =<
sy D D 8’ Q 5 O O g & < &
Q (&) @ O @ @ @ -

Performance Evaluation (2)

=1 O Intel Core i7 (OpenMP) .
~_| @ NVIDIA GeForce (OpenCL)
_| W Predictive Model ‘
Q. — B Oracle
3 o : !
) — : |
7)) — : 3
~— | :
o~ [[fnn-] :
< %) < cn: n < M O < cn: c
@ %, ¢ ¥ 3 E 3 3 3 3 g o
@ = =

Intel Core i7 + NVIDIA GeForce GTX 580

Comparison to State-of-the-Art

30x 29x 74x
SN

Speedup

O OpenMPC
O SNU
B Predictive Model

OI?I?II

bt cg ep ft

A N B

sp mean

e SNU: hand-coded implementation

o Seo et al. [ISWC 2011]

e OpenMPC: OpenMP to CUDA
o Lee et al. [PPoPP 2009]

Mapping Parallel Programs to
Heterogeneous Systems

e Mapping Tasks to Devices
o Machine-learning model (decision tree) using code
features.

e (Generating and optimizing device code
o Generate OpenCL from OpenMP parallel loops.
o Data transformations for good GPU performance.

e Results
o 1.67x speedup over original OpenMP code.
o 1.63x speedup over hand-coded OpenCL code.

