
Portable Mapping of Data-
Parallel Programs to 

OpenCL for Heterogeneous 
Systems

Dominik Grewe, Zheng Wang,
Michael O'Boyle

CGO 2013, Shenzhen, China
26 February 2013



Motivation

● Heterogeneous Computing has become 
mainstream
○ OpenCL as industry-wide standard

● High Performance Computing
○ dedicated GPUs

● Desktop/Mobile Computing
○ integrated GPUs
○ System-on-Chips



Two main challenges

● Task Mapping
○ Selecting the most suitable processor for a given 

task.
○ Partitioning workloads across processors.
○ Dealing with resource contention.

● Code Generation & Tuning
○ Generate low-level code from high-level languages.

■ OpenCL as intermediate representation
○ Optimize code for specific target architectures.

■ Data layout transformations
■ Parallelism mapping
■ ...



● OpenMP loop parallelism

● Generate efficient OpenCL code
○ optimize for GPU

● Pick target device
○ at runtime
○ using static & dynamic code features

Mapping Data-Parallel Programs to 
OpenCL for Heterogeneous Systems

Open
MP



Mapping Data-Parallel Programs to 
OpenCL for Heterogeneous Systems

Open
MP

Kernel
Extraction

Code
Optimisation

OpenCL Code
Generation

Feature
Extraction

Program 
Features

Code
Merge

ML
Model

Open
CL

Output 
Program

OMP OCL

ML



Optimising Memory Accesses

● CPU: intra-thread locality
time

th
re

ad
s

● GPU: inter-thread locality
○ consecutive threads access consecutive data

threads

tim
e



Dynamic Index Reordering

● Rearrange data dynamically at runtime.
○ A globally optimal data layout does not always 

exist.

● May not always be beneficial:
○ Cost: Data transformation
○ Benefit: Improved memory accesses

Transform
A => A' Kernel Kernel Transform

A' => A



Dynamic Index Reordering



Dynamic Index Reordering

● Data-driven heuristic to decide when the 
transformation is beneficial.
○ size of data structure
○ #accesses to data structure

● using micro-benchmarks for training



Predicting the Mapping

● Predict for the whole program whether to run 
parallel sections on CPU or GPU.
○ Binary decision tree classifier.

● Based on static code features.
○ Instantiated at run-time.
○ Aggregated across all parallel regions.



Creating the Decision Tree



Experimental Methodology

● Platforms
○ Intel CPU + NVIDIA GeForce
○ Intel CPU + AMD Radeon
○ AMD Llano APU
○ Intel IvyBridge

● NAS parallel benchmark
○ full suite of 8 benchmarks

● Comparison
○ closest related work: OpenMPC (Lee et al.)
○ hand-written OpenCL implementation (Seo et al.)



Performance Evaluation

Intel Core i7 + NVIDIA GeForce GTX 580



Performance Evaluation (2)

Intel Core i7 + NVIDIA GeForce GTX 580



Comparison to State-of-the-Art

● SNU: hand-coded implementation
○ Seo et al. [IISWC 2011]

● OpenMPC: OpenMP to CUDA
○ Lee et al. [PPoPP 2009]



Mapping Parallel Programs to 
Heterogeneous Systems

● Mapping Tasks to Devices
○ Machine-learning model (decision tree) using code 

features.

● Generating and optimizing device code
○ Generate OpenCL from OpenMP parallel loops.
○ Data transformations for good GPU performance.

● Results
○ 1.67x speedup over original OpenMP code.
○ 1.63x speedup over hand-coded OpenCL code.


