
Array Building Blocks: A dynamic compiler for data-parallel
heterogeneous systems
Chris J. Newburn (CJ)

Summary
Hardware platforms are getting harder to program effectively, as they grow in complexity to
include multiple cores, SIMD hardware, accelerators (e.g. GPUs and Intel’s Knights Ferry -
formerly Larrabee) and even clustering support. The challenge is to provide an efficient means
of exploiting parallel performance to the masses of novice programmers. At least two things are
required to solve this problem: 1) a language interface that enables ease of use without the perils
of parallel programming, and 2) a compiler infrastructure that takes a high-level specification of
what to do, and portably maps it onto a variety of heterogeneous hardware targets.

This tutorial uses Intel’s newly-released Array Building Blocks (ArBB) to illustrate the
challenges and potential solutions in this space. ArBB is a dynamic compiler infrastructure that
can compile or JIT for both SIMD and thread parallelism on symmetric multi-processor,
distributed, and accelerator targets. Parallelism is exposed to this infrastructure via an embedded
language, e.g. a library-based C++ API, using aggregate data types and operators. It enables
safety and debuggability by construction. It allows applications with kernels that are recoded
with minimized effort to be compiled once using standard compilers, and then be dynamically
retargeted to platforms that haven’t even been invented yet by simply switching runtime
libraries. We put ArBB in the context with a variety of other programming models, including
CUDA and OpenCL.

Target Audience
This tutorial may be of practical interest to language experts who are interested in parallel
language design, to educators who may want to leverage this material to teach parallel
programming models for emerging architectures, and to practitioners who may benefit from our
experience implementing compilers to address customer-driven concerns. The presentation of
new language features, application examples, optimization techniques that enable efficient
offload to accelerators, and the demonstration of speedup and debugging support on both
standard laptops and pre-production acceleration hardware are some of the aspects of this tutorial
that could draw participation.

Outline
Overview
The objectives of this tutorial are several:

- Highlight the need for new data-parallel APIs that offer features not currently
available through current offerings or their extensions.
- Highlight the need for a new generation of retargetable heterogeneous compilers.
- Describe a specific compiler, based on ArBB, that meets those requirements, and that
is a major part of Intel’s parallel, heterogeneous and accelerator platform enabling strategy.
- Explore in detail ArBB’s compiler architecture, optimizations, phases, code generation
strategies, and interactions with threading and heterogeneous runtimes.
- Provide the audience with both an intuitive overview and substantive training in a
product that’s been publicly released as a beta.

- Show the relevance of this programming model to several application domains, and
describe how it relates to and interacts with other programming models.
- Demonstrate the product on both laptops and moderately parallel systems with
Knights Ferry (formerly Larrabee) compute accelerators.

Motivation
Parallel programming and debugging is hard. The majority of today’s programmers prefer to
think serially, and want to avoid the productivity pitfalls of data races and debugging of
concurrent code. Those programmers that do pursue the last bit of performance by blocking for
caches and targeting implementation-specific features in their code often end up with code that’s
very difficult to port and maintain. In contrast, ArBB provides a higher-level abstraction through
which programmers can expose data parallelism with a serial sequence of operators on aggregate
data types. Only performance-sensitive kernels need to be modified, and features of the ArBB
API, such as elemental functions, try to minimize the amount of code restructuring. ArBB’s
abstraction allows programmers to focus on expressing the “what”, and leaves the “how” to the
compiler infrastructure, by default. If expert programmers want exert more control, the hooks
are there to do that.

There’s an increase in thread and SIMD parallelism in today’s platforms. ArBB offers a means
of being able to seamlessly harvest both of these, without having to mix programming
models. But it does interoperate with other programming models, such as Threading Building
Blocks (TBB), that enable use of thread parallelism. And there’s an increasing pace in
architectural changes that are visible to software, such as the memory abstraction model in
heterogeneous or distributed systems, the advent of new instruction sets, and increasing sizes and
layers of cache hierarchy.

Access to parallelizing compiler infrastructure should not be limited by the front end. Modern
languages provide productivity improvements, e.g. through garbage collection and
scripting. ArBB provides a virtual machine interface through which additional language front
ends may be added, beyond the initial C++ offering.

Details
I’ll describe how ArBB works, using diagrams, application examples, and demonstrations. An
application will by modified so that its kernels use ArBB, then the code will be compiled and
debugged with a standard compiler in a stock integrated development environment (IDE). An
overview of ArBB’s API will follow. Aggregate types and operators will be explained, and I’ll
explain how data movement and synchronization works across disjoint data spaces.

We’ll take a look under the hood at ArBB’s compiler architecture. We’ll examine its phases,
optimizations, and code generation strategies. We’ll explore how dynamic compilation invoked,
what code generation strategies are used, and how retargeting and cross-platform support
works. And I’ll provide some details on the threading and heterogeneous runtimes work.

ArBB is moving to provide an open standard for its virtual machine, allowing other frontends to
be added, other than C++. We expect to illustrate this with Python, and perhaps other examples.
ArBB’s first-class representations of code objects (closures) enable explicit manipulation of the
code generation process. These apply to compiled objects at both the IR stage and final code
generation phase.

One section of the tutorial, that reflects a lot of thought and discussion within Intel’s tool groups,
covers programming models. I’ll compare and contrast different programming models along
several axes and show how they can be layered. I’ll cover common issues, like elemental
functions, array notation, and perhaps the specification of ordering and locality.

I’d like to wrap up with results of some performance analysis and a demonstration of ArBB’s
applicability across several different application domains. I expect to demonstrate performance
on both a laptop and (if logistics allow) pre-production Intel accelerator hardware, called Knights
Ferry, formerly known as Larrabee.

References
- Chris J. Newburn, Michael McCool, Byoungro So, Zhenying Liu, Anwar

Ghuloum, Stefanus Du Toit, Zhi Gang Wang, Zhao Hui Du, Yongjian Chen,
Gansha Wu, Peng Guo, Zhanglin Liu, Dan D. Zhang, Intel® Array Building
Blocks: A Retargetable, Dynamic Compiler and Embedded Language, In
Proceedings of Code Generation and Optimization, 2011

- Anwar Ghuloum, Eric Sprangle, Jesse Fang, Gansha Wu, and Xin Zhou. Ct:
A Flexible Parallel Programming Model for Tera-scale Architectures.
Technical Report White Paper, Intel Corporation, 2007

- Michael McCool, Data-Parallel Programming on the Cell BE and the GPU
Using the RapidMind Development Platform, GSPx Multicore Applications
Conference, 2006.

Bio
Chris (CJ) Newburn serves as a feature architect for Intel's Intel64 platforms, and has contributed
to a combination of hardware and software technologies that span heterogeneous compiler
optimizations, middleware, JVM/JIT/GC optimization, acceleration hardware, ISA changes,
microcode and microarchitecture over the last thirteen years. Performance analysis and tuning
have figured prominently in the development and production readiness work that he's done. At
present, his primary responsibilities include serving as an architect of Array Building Blocks, and
representing software tools' interests in our many-core accelerator efforts. He likes to work on
projects that span the hardware-software boundary, that span organizations, and that foster
collaboration across organizations. He has submitted nearly twenty patents and has numerous
journal and conference publications. He helped start CGO, has served on several program
committees, as a journal editor, and as an NSF panelist. He wrote a binary-optimizing, multi-
grained parallelizing compiler as part of his Ph.D. at Carnegie Mellon University. Before grad
school, in the 80s, he did stints in a couple of start-ups, working on a voice recognizer and a
VLIW mini-super computer. He's glad to be working on volume products that his Mom uses.

