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Compiler verification:

Why?
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Can you trust your compiler?

Executable
machine code

Source
program

Compiler6= ?

The miscompilation issue: Bugs in the compiler can lead to incorrect
machine code being generated from a correct source program.
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Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of twenty
commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for each, found
situations in which the compiler generated incorrect code for accessing
volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years using it to
find compiler bugs. During this period we reported more than 325
previously unknown bugs to compiler developers. Every compiler we
tested was found to crash and also to silently generate wrong code
when presented with valid input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011
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Exhibit A: GCC bug #323

Title: optimized code gives strange floating point results.

#include <stdio.h>

void test(double x, double y)

{
double y2 = x + 1.0; // computed in 80 bits, not rounded to 64 bits

if (y != y2) printf("error_n");

}

void main()

{
double x = .012;

double y = x + 1.0; // computed in 80 bits, rounded to 64 bits

test(x, y);

}

Why it is a bug: C99 allows intermediate results to be computed with
excess precision, but requires them to be rounded at assignments.
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Exhibit A: GCC bug #323

Reported in 2000.

Dozens of duplicates.

More than 150 comments.

Still not acknowledged as a bug.

“Addressed” in 2009 (in GCC 4.5) via flag
-fexcess-precision=standard.

Responsible for PHP’s strtod() function not terminating on some
inputs. . .

. . . causing denial of service on many Web sites.
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Are miscompilation bugs a problem?

For ordinary software:

Compiler-introduced bugs are negligible compared with the bugs in
the program itself.

Programmers rarely run into them.

When they do, debugging is very hard.
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Are miscompilation bugs a problem?

For critical software validated by testing only:

Good testing should find all bugs, even those compiler-introduced.

Optimizations can complicate test plans.
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Are miscompilation bugs a problem?
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For critical software validated by review, analysis & testing:
(e.g. DO-178 in avionics)

Manual reviews of (representative fragments of) generated assembly.

Turning all optimizations off to get traceability.

Reduced usefulness of formal verification.
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Miscompilation and formal verification

Executable model
(Simulink, SCADE, etc)

code generator

Source code (C)

compiler

Executable
machine code

Model
checking

Program
proof

Static
analysis

The guarantees obtained (so painfully!) by source-level formal verification
may not carry over to the executable code . . .

X. Leroy (INRIA) Verifying a compiler CGO 2011 10 / 57



A solution? Verified compilers

With a regular compiler:

Source
program

Executable

compiler

Formal verification

?
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A solution? Verified compilers

With a formally verified compiler:

Source
program

Executable

compiler

Formal verification

observational
equivalence

The properties formally established on the source program carry over to the
executable.
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Formal verification of compilers

A radical solution to the miscompilation problem:

Apply program proof to the compiler itself to prove that it preserves the
semantics of the source code.

After all, compilers are complicated programs with a simple specification:

If compilation succeeds, the generated code should behave as
prescribed by the semantics of the source program.
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An old idea. . .

Mathematical Aspects of Computer Science, 1967
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An old idea. . .

Machine Intelligence (7), 1972.
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Compiler verification:

How far are we today?

(X. Leroy, Formal verification of a realistic compiler, CACM 07/2009)
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The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a very large subset of C.

Target language: PowerPC/ARM/x86 assembly.

Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not trying to
prove an existing compiler.
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The subset of C supported

Supported natively:

Types: integers, floats, arrays, pointers, struct, union.

Expressions: all of C, including pointer arithmetic.

Control: if/then/else, loops, goto, regular switch.

Functions, including recursive functions and function pointers.

Dynamic allocation (malloc and free).

Volatile accesses.
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The subset of C supported

Not supported at all:

The long long and long double types.

Unstructured switch (Duff’s device), longjmp/setjmp.

Variable-arity functions.

Supported through (unproved!) expansion after parsing:

Block-scoped variables.

typedef.

Bit-fields.

Assignment between struct or union.

Passing struct or union by value.
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The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

(LCM), (Software pipelining)

(Instruction scheduling)
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Formally verified in Coq

After 50 000 lines of Coq and 4 person.years of effort:

Theorem transf_c_program_is_refinement:

forall p tp,

transf_c_program p = OK tp ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Behaviors beh = termination / divergence / going wrong
+ trace of I/O operations (syscalls, volatile accesses).
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The whole CompCert compiler

AST C

AST Asm

C source

AssemblyExecutable

parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB
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Performance of generated code
(On a PowerPC G5 processor)
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Status

Complete source & proofs available for evaluation and research purposes:

http://compcert.inria.fr/

(+ research papers)

Compiler runs on / produces code for
{Linux,MacOSX,Cygwin} / {PPC, ARM, x86}.

Tested on small benchmarks (up to 3000 LOC), real-world avionics codes,
and by random testing.

X. Leroy (INRIA) Verifying a compiler CGO 2011 23 / 57



As of early 2011, the under-development version of CompCert is
the only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011
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Compiler verification:

How?
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Verification patterns
(for each compilation pass)

transformation transformation

validator

×

Verified transformation Verified translation validation

= formally verified

= not verified

Verified translation validation:

Less to prove (if validator simpler than transformation).

Strong soundness guarantees, but no completeness in general.

Validator reusable for several variants of an optimization.
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An example of a verified transformation:

register allocation by graph coloring

(X. Leroy, A formally verified compiler back-end, §8, J. Autom. Reasoning 43(4))

(S. Blazy, B. Robillard, A. W. Appel, Formal verification of coalescing graph-coloring

register allocation, ESOP 2010)
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Starting point: a CFG for a Register Transfer Language

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl, a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)
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Algorithm 1: liveness analysis (backward dataflow analysis)

Lout(p) =
⋃
{transf(Lout(s), instr-at(s)) | s successof of p}

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl, a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)

[tbl size s]

[tbl size i s]

[tbl size i s]

[tbl size i s a]

[tbl size i s b]

[tbl size i s c]

[tbl size i s]

[tbl size i s]

[s d]

[e]
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Algorithm 2: construct interference graph

For each instruction p : r := . . ., add edges between r and Lout(p) \ {r}.

(+ Chaitin’s special case for moves.) (+ Recording of preferences.)

tbl

size

i
s

a

b

c
d

e
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Algorithm 3: Coloring of the interference graph

Construct a function φ : Variable → Register + Stackslot such that
φ(x) 6= φ(y) if x and y interfere.

We use the Iterated Register Coalescing heuristic by George & Appel.

tbl

size

i
s

a

b

c
d

e

tbl

size

i
s

a

b

c
d

e
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Algorithm 4: Rewriting the code

Replace all variables x by their color φ(x).
(Spilling & reloading are done in a later pass.)

f1 = 0.0

r3 = 0

if (r3 >= r2)

r4 = r3 << 2

r4 = load(r1, r4)

f2 = float(r4)

f1 = f1 +f f2

r3 = r3 + 1

f2 = float(r2)

f1 = f1 /f f2

return(f1)
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What needs to be proved? Part 1: proofs of algorithms

Liveness analysis: show that the mapping Lout computed by Kildall’s
fixpoint algorithm satisfies the inequations

Lout(p) ⊇ transf(Lout(s), instr-at(p)) if s successor of p

Construction of the interference graph: show that the final graph G
contains all expected edges, e.g.

p : x := . . . ∧ y 6= x ∧ y ∈ Lout(p) =⇒ (x , y) ∈ G

Coloring of the interference graph: show that (x , y) ∈ G =⇒ φ(x) 6= φ(y)

Either by direct proof (Blazy, Robillard, Appel) or by verified validation:

Validator: enumerate all edges (x , y) of G and abort if φ(x) = φ(y)

Correctness proof for the validator: trivial.
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What needs to be proved? Part 2: semantic preservation

What does “x is live at p” means, semantically?

Hmmm . . .

What does “x is dead at p” means, semantically?

That the program behaves the same regardless of the value of x at point p.

Invariant

Let E : variable → value be the values of variables at point p in the
original program. Let R : location→ value be the values of locations at
point p in the transformed program.
E and R agree at p, written p ` E ≈ R, iff

E (x) = R(φ(x)) for all x live before point p
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Proving semantic preservation

Show a simulation diagram of the form

p,E ,M
p ` E ≈ R

p,R,M

p′,E ′,M ′

t

?
........................................

p′ ` E ′ ≈ R ′

p′,R ′,M ′

t

?

................

Hypotheses: left, a transition in the original code; top, the invariant
(register agreement) before the transition.

Conclusions: one transition in the transformed code; bottom, the invariant
after the transition.
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Semantic preservation for whole executions

(initial state) S1
invariant

T1 (initial state)

S2

ε ?

invariant
T2

ε?

S3

ν1 ?

invariant
T3

ν1?

S4

ν2 ?

invariant
T4

ν2?

(final state) S5

ε ?

invariant
T5 (final state)

ε?

Proves that the original program and the transformed program have the
same behavior (the trace t = ν1.ν2).
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An example of verified translation validation:

software pipelining

(J.-B. Tristan and X. Leroy, A simple, verified validator for software pipelining,

POPL 2010)
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Software pipelining

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

Original loop (4 iterations) Pipelined loop
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Software pipelining

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

MUL LD
ST ADD LD

Steady

state

Original loop (4 iterations) Pipelined loop
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Software pipelining

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

LD
LD
MUL
ADD
ST

MUL LD
ST ADD LD

Steady

state

LD
LD
MUL LD
LD
MUL LD
ADD LD

Prologue

MUL
ST ADD
ST ADD
ST

Epilogue

Original loop (4 iterations) Pipelined loop
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The pipeliner as a black box

pipeline(B, i ,N) = (P ,S, E , µ, δ)

original loop body

loop index variable

loop bound variable

prologue

steady state

epilogue

initiation interval
unrolling factor

Effect on the loop variable i :

B : +1 P : +µ S : +δ E : +0
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The corresponding loop transformation

i := 0

if(i < N)

B

in:

out

i := 0

if(N ≥ µ)

M := N − µ
M := M / δ

M := M × δ
M := M + µ

P

if(i < M)

SE

if(i < N)

B

in:

out

Before: After:
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How to validate it?

For a fixed number of iterations N = µ+ n × δ + m, consider the
unrollings of the two loops:

Original loop: BN (= N copies of B)

Pipelined loop: P ;Sn; E ;Bm

If n,m are known at compile-time, we can use symbolic evaluation to show
semantic equivalence between these two basic blocks.
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Basics of symbolic evaluation

Interpret instructions as substitutions:

α(x := y + z) = x 7→ y + z

Interpret basic blocks by composing substitutions:

x u Mem

+1

store

load

*

y x Memz

α


y := x + 1;
store(u, y);
z := load(u);
x := y ∗ z ;

 =

X. Leroy (INRIA) Verifying a compiler CGO 2011 42 / 57



Validation by comparison of symbolic evaluations

Fundamental property: two basic blocks B1 and B2 that have the same
symbolic evaluation (α(B1) = α(B2)) are semantically equivalent.

Special care must be taken for:

Comparing modulo algebraic laws and load/store properties:

(e + 1) + 2 = e + 3

load(store(m, e1, e2), e3) = load(m, e3) if e1 6= e3

Tracking operations that can fail at run-time (integer division).

Excluding fresh temporaries (introduced by Modulo Variable
Expansion) from the comparison.
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Checking semantic equivalence of the two loops

Original loop: Bµ+n×δ+m

Pipelined loop: P ;Sn; E ;Bm

How to check semantic equivalence for all counts n,m ?

Bµ Bδ Bδ Bm

P S S

E

Original:

Pipelined:
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Checking semantic equivalence

Consider the case n = m = 0 and N = µ:

Bµ

P

E

Original:

Pipelined:

First (necessary) condition: P ; E ≈ Bµ

(with ≈ denoting semantic equivalence).
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Checking semantic equivalence

What if we exit the pipelined loop one step earlier?

(I.e. n 7→ n − 1 and m 7→ m + δ and N unchanged.)

Bµ Bδ Bδ Bm

P S S

E

Original:

Pipelined:
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Checking semantic equivalence

What if we exit the pipelined loop one step earlier?

(I.e. n 7→ n − 1 and m 7→ m + δ and N unchanged.)

Bµ Bδ Bδ Bm

P S S

E

Original:

Pipelined:

E

Second condition: S; E ≈ E ;Bδ
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The validation algorithm

validate (i ,N,B) (P,S, E , µ, δ) θ =
α(Bµ) ≈θ α(P; E) (A)
∧ α(E ;Bδ) ≈θ α(S; E) (B)
∧ α(B) v θ (C)
∧ α(B)(i) = i + 1 (D)
∧ α(P)(i) = i + µ (E)
∧ α(S)(i) = i + δ (F)
∧ α(E)(i) = i (G)
∧ α(B)(N) = α(P)(N) = α(S)(N) = α(E)(N) = N (H)

(Where θ is the set of observed variables, α is symbolic evaluation,
≈θ a syntactic equivalence, and v a condition on free variables.)
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Soundness of the validator

validate (i ,N,B) (P,S, E , µ, δ) θ = true

∀n,m, α(Bµ+δ×n+m) ≈θ α(P;Sn; E ;Bm) v θ

(R1,M)

(R2,M)

(R ′1,M
′)

(R ′2,M
′)

execution of
original loop, unrolled

execution of
pipelined loop, unrolled

agree on θ agree on θ

⇓

⇓
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Summary

α(Bµ) ≈θ α(P; E) ∧ α(E ;Bδ) ≈θ α(S; E)

A surprisingly simple validator for a difficult optimization.

So simple it could go into regular, non-verified compilers.

The validator uses completely different concepts from the optimization.
(No RAW/WAR/WAW dependencies; no modulo variable expansion; etc)

The validator is incomplete in theory, but appears complete against
published modulo-scheduling algorithms.
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Compiler verification:

How far can we go?
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Current status

At this stage of the CompCert experiment, the initial goal – proving
correct a nontrivial compiler – appears feasible.

(Within the limitations of today’s proof assistants such as Coq.)

This opens up many directions for future work.
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Directions for future work

Higher assurance:

Prove more of the unproved parts (e.g. parsing, bit-field emulation).

Formal connections with verification tools.

Formal connections with hardware (microarchitecture) verification.

Other source languages:

Reactive languages (M. Pouzet, M. Pantel, M. Strecker).

Functional languages (Z. Dargaye, A. Tolmach).

Elements of C++ (T. Ramananandro, G. Dos Reis).

Connections with run-time system verification (A. Tolmach et al).
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Directions for future work

Shared-memory concurrency:

Verified Software Toolchain (A. Appel et al).

CompCertTSO (P. Sewell et al).

Shorter, easier proofs:

More proof automation.

Generic execution engine for optimizations (S. Lerner & Z. Tatlock)
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More optimizations!

Done in CompCert and related experiments:

Verified transformations Verified translation validation

Constant propagation Lazy Code Motion

CSE over ext. basic blocks Trace scheduling

Software pipelining

Register allocation Register allocation

w/ trivial spilling w/ advanced spilling & splitting

Much remains to be done, in particular:

Loop optimizations.

SSA-based optimizations.

Verified translation validation as the path of least resistance?
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SSA and what to prove about it

Plan A: formalize and reason about SSA semantics.

RTL Into
SSA

SSA SSA
optims

SSA Out of
SSA

RTL

Plan B: use SSA in untrusted implementations; validate over RTL.

RTL Into
SSA

SSA SSA
optim

SSA Out of
SSA

RTL × RTL

Validator

Is SSA just an algorithmic device? (faster, simpler, more powerful optims)
Or does SSA have deep semantic properties as well?
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Loop optimizations

Optimizations such as loop interchange or blocking appear difficult to
prove by elementary simulation arguments.

A promising approach: validation a posteriori with the polyhedral model.
(Work in progress by A. Pilkiewicz; see also Ph. Clauss et al)
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In closing. . .

The formal verification of compilers and other development and
verification tools

. . . is a fascinating challenge,

. . . appears within reach,

. . . and has practical importance for critical software.

Much remains to be done. Feel free to join!
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