
CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Coloring-based Coalescing
for Graph Coloring Register Allocation

Rei Odaira, Takuya Nakaike, 

Tatsushi Inagaki, Hideaki Komatsu, 

Toshio Nakatani

IBM Research - Tokyo



2

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Register Allocation

� Goal: Reduce register spills!

Live-range 

splitting
Register coalescing Graph coloring

Compilation phase

Physical 

registers 

allocated

Finer 

allocation 

unit
Allocation 

unit tuned



3

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Our Approach:
Use Graph Coloring in Register Coalescing

� Goal: Reduce more register spills!

Live-range 

splitting

Register coalescing

Graph coloring

Compilation phase

Graph coloring

Same algorithm



4

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Outline

Live-range 

splitting
Register coalescing Graph coloring



5

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Running Example

� Assign 3 variables to 

2 physical registers.

– A, B, and C

– R1 and R2

� Need to spill one of 

the variables.

A = ...

B = ...

while (true) {

C = ...

...= A + ...

...= C + ...

if (...) {

A = ...

B = C + ...

} else {

if (B) {

A = ...

...= B + ...

} else {

if (A > 0) break

}

}

A = A + ...

B = B + ...

}



6

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Register Allocation as 
Graph Vertex Coloring

� Simple and powerful 

abstraction

– [Chaitin et al., ’81]

� Color = physical 

register

� Interference graph

– Node = live range of 

a variable

– Edge = interference 

between live ranges

A = ...

B = ...

while (true) {

C = ...

...= A + ...

...= C + ...

if (...) {

A = ...

B = C + ...

} else {

if (B) {

A = ...

...= B + ...

} else {

if (A > 0) break

}

}

A = A + ...

B = B + ...

}

Which node to spill?

A

B C

R1 R2 



7

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Calculating Spill Costs and Interference Degrees

� Assume optimistic heuristics [Briggs, ’94].

� Cost = frequency of accesses to a variable.
� Degree = how much a node restricts the 
coloring of its neighbors.

A = ...

B = ...

while (true) {

C = ...

...= A + ...

...= C + ...

if (...) {

A = ...

B = C + ...

} else {

if (B) {

A = ...

...= B + ...

} else {

if (A > 0) break

}

}

A = A + ...

B = B + ...

}

A

B C

R1 R2 

10220C

15230B

15230A

Cost /

Degree

DegreeCost

Benefit of register allocation.



8

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Simplifying Interference Graph

� Push the least beneficial node to a coloring stack.

A

B C

R1 R2 

10220C

30130B

30130A

Cost /

Degree

DegreeCost

Coloring stack

C



9

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Simplifying Interference Graph

� Finished simplifying the graph.

A

B C

R1 R2 

10220C

30130B

30130A

Cost /

Degree

DegreeCost

C

A

B



10

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Selecting Colors

� Pop a node.

� Select a color that is not assigned to its neighbors.

A

B C

R1 R2 

C

B



11

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Selecting Colors

� If no color is available, the node is marked for spilling.

A

B C

R1 R2 

Spill



12

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Problem: Spill Everywhere is Costly.

� Live range can be either:

– Assigned to a single register, or

– Entirely spilled to the stack.

� Spill can be further reduced:

– By assigning only a part of a live 

range to a register, or

– By assigning different parts to 

different registers.

� Live-range splitting

R1 = ...

R2 = ...

while (true) {

C = ...

Store C to stack

...= R1 + ...

Load C from stack

...= C + ...

if (...) {

R1 = ...

Load C from stack

R2 = C + ...

} else {

if (R2) {

R1 = ...

...= R2 + ...

} else {

if (R1 > 0) break

}

}

R1 = R1 + ...

R2 = R2 + ...

}



13

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Outline

Live-range 

splitting
Register coalescing Graph coloring



14

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Live-range Splitting

� [Briggs, ’92], [Kolte et al., ’94], 

[Nakaike et al., ’06], etc.

� Split live ranges into shorter 

sub-ranges: A1, A2, A3, etc.

– Split sub-ranges are 

copy-related.

� Graph coloring can assign 

different colors to different 

sub-ranges.

A1 = ...

B1 = ...

while (true) {

C1 = ...

...= A1 + ...

A2 = A1

...= C1 + ...

C2 = C1

if (...) {

A3 = ...

B2 = C2 + ...

} else {

B2 = B3 = B1

if (B1) {

A3 = ...

...= B3 + ...

B2 = B3

} else {

A3 = A2

if (A2 > 0) break

}

}

A1 = A3 + ...

B1 = B2 + ...

}



15

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

In Reality, It’s Not That Easy.

� Too large degrees and too small 

costs confuse the coloring heuristics.

B1 B2 B3

R1 R2 

A1 = ...

Store A1 to stack

R1 = ...

while (true) {

R2 = ...

Load A1 from stack

...= A1 + ...

...= R2 + ...

if (...) {

R1 = ...

R2 = R2 + ...

} else {

R2 = R1

if (R1) {

R1 = ...

...= R2 + ...

} else {

Load A2 from stack

R1 = A2

if (R1 > 0) break

}

}

A1 = R1 + ...

Store A1 to stack

R1 = R2 + ...

}

No spill reduction by splitting.Copy-related

A1

A2

A3 C1

C2

� We need coalescing!



16

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Outline

Live-range 

splitting
Register coalescing Graph coloring



17

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Outline

Live-range 

splitting
Register coalescing Graph coloring

List splitting 

point candidates.

Select good splitting 

points from the 

candidates.



18

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Register Coalescing

� Merge copy-related sub-ranges into a 
longer sub-range.

– [Chaitin, ’82], [Briggs, ’94], 
[George et al., ’96], [Park et al, ’98]

– Originally proposed to reduce copies.

To reduce spills, it has pros and cons.
� Pros: Coalesced node can become 
colorable.

– Due to increased cost.

� Cons: Coalesced node can become 
uncolorable.

– Due to increased degree.

� Depend on the number of common 
neighbors.

X1 X2 X1,2

Y Y

X1 X2 X1,2

Copy-related



19

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

You Should Coalesce Those Nodes That Have 
Many Common Neighbors.

� As long as the coalesced nodes do not become uncolorable.

� No good criteria are known.

A1,2,3

B1 B2 B3

C1

C2 A1,2,3

B1,2,3 C1,2

Coalesce those nodes that 

have 3 common neighbors.

� Minimum spills 

in this graph.

Coalesce those nodes that 

have 2 common neighbors.

� Revert to the original graph.

1 store,

1 load
1 store,

2 loads



20

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Our Approach

Live-range 

splitting

Register coalescing

Graph coloring
Trial graph 

coloring

Same algorithm



21

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Our Rationale

Coloring results reflect the structure of a graph.

� Common neighbors 

� Likely the same color by trial coloring.

– Common neighbors impose the same coloring restrictions.

� Can become uncolorable by coalescing

� Likely different colors by trial coloring.

– Interference prevents them from being assigned 

the same color.



22

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Coloring-based Coalescing

1. Do trial coloring.

2. Coalesce copy-related nodes that are assigned 

the same color.

3. Clear the colors.

4. Do actual coloring for register allocation.

Live-range 

splitting

Register coalescing

Graph coloringColoring Coalescing Clearing



23

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Trial Coloring, Coalescing, and Actual Coloring

� Increase the number of colors on demand to color all nodes.

B1 B2 B3

R1 R2 R101 

A1,2

A3

B1 B2,3

C1,2

Trial coloring
Actual coloring

(minimum spills 

in this graph)

A1

A2

A3 C1

C2
A1,2

A3

B1 B2,3

C1,2

Coalescing



24

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Two Key Points to Obtain Good Coalescing

1. Coalesce A1 and A2.

– Because neighbors of A1 totally included in those of A2.

Trial coloring successfully assigns A1 and A2 the same color.

– B1, B2, and C1 impose the same coloring on A1 and A2.

B1 B2 B3

A1

A2

A3 C1

C2

Coloring 

stack

B2

B3

A3

C2

A1

B1

C1

A2



25

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Two Key Points to Obtain Good Coalescing

2. Do not coalesce B1 with B2.

– Because it could create a triangle, which is not 2-colorable.

Trial coloring successfully assigns them different colors.

– Due to the 2-coloring of the chain of B1-C2-A3-B2.

B1 B2 B3

A1

A2

A3 C1

C2

A2

B3

A3

C2

A1

B1

C1

B2

Coloring 

stack



26

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Existing Algorithms are Too Conservative or Too Aggressive.

B1 B2 B3

A1

A2

A3

C1,2

Iterated coalescing

[George et al., ’96]:

Must keep the colorability of 

coalesced nodes.

A1,2,3

B1,2,3 C1

C2

Optimistic coalescing

[Park et al., ’98]:

After aggressive coalescing,

split again if uncolorable.

– But a colored node 

cannot be split again.



27

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

More Iterations Can Produce Better Results.

� But too many iterations can be harmful.

– Increased spills.

– Increased compilation time.

� Need experiments.

Live-range 

splitting

Register coalescing

Graph coloringColoring Coalescing Clearing



28

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Experiments
� Environment

– IBM J9/TR 2.4 JIT compiler

• Implemented a graph coloring register allocator and the coalescing algorithms.

• Implemented SSA-and-reverse-SSA-based live-range splitting [Briggs, ’92].

– IBM System z9 2094 / 4x 64-bit CPUs / 8GB memory / Linux 2.6.16

• 16 integer and 16 floating-point registers.

� Benchmarks

– SPECjvm98 and 2 larger benchmarks from DaCapo

� Spill cost calculation

– Static number of uses and definitions, weighted by 10 in a loop

� Baseline

– Graph coloring register allocator with iterated coalescing (no splitting)

� Compared approaches

– Splitting + iterated coalescing

– Splitting + optimistic coalescing

– Splitting + coloring-based coalescing (once)

– Splitting + coloring-based coalescing (twice)



29

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Static Spill Costs (100% = w/o Splitting)
� 6% reduction on average by coloring-based coalescing once.

– 18% reduction by twice.

� More than 20% increase on average by the existing algorithms.

0

50

100

150

200

250

c
o
m
p
re
s
s

je
s
s

d
b

ja
v
a
c

m
p
e
g
a
u
d
io

m
tr
t

ja
c
k

h
s
q
ld
b

lu
in
d
e
x

G
e
o
. 
M
e
a
n

S
ta
ti
c
 s
p
il
l 
c
o
s
ts
 (
%
)

Splitting + iterated coalescing

Splitting + optimistic coalescing

Splitting + coloring-based coalescing (once)

Splitting + coloring-based coalescing (twice)

L
o
w
e
r is

 b
e
tte
r



30

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Execution Time (100% = w/o Splitting)

� JIT compilation time not included.

� Up to 15% and on average 3% speed-up.

� Up to 12% and on average 1% speed-up by the existing algorithms.

90

95

100

105

110

115

120

c
o
m
p
re
ss

je
ss d
b

ja
va
c

m
p
eg
au
d
io

m
tr
t

ja
ck

h
sq
ld
b

lu
in
d
e
x

G
eo
. M

e
an

R
e
la
ti
v
e
 s
p
e
e
d
 (
%
)

Splitting + iterated coalescing

Splitting + optimistic coalescing

Splitting + coloring-based coalescing (once)

Splitting + coloring-based coalescing (twice)

H
ig
h
e
r is

 b
e
tte
r



31

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Compilation Time (100% = w/o Splitting)
� Increase mostly due to live-range splitting.

– ~50% increase on average by coloring-based coalescing.

– 32% increase by iterated coalescing, while 78% by optimistic 
coalescing.

0

50

100

150

200

250

300

c
o
m
p
re
ss

je
ss d
b

ja
va
c

m
p
eg
au
d
io

m
tr
t

ja
ck

h
sq
ld
b

lu
in
d
e
x

G
eo
. M

e
an

C
o
m
p
il
a
ti
o
n
 t
im

e
 (
%
)

Splitting + iterated coalescing

Splitting + optimistic coalescing

Splitting + coloring-based coalescing (once)

Splitting + coloring-based coalescing (twice) L
o
w
e
r is

 b
e
tte
r



32

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Conclusions

Coloring-based coalescing effectively reduces spills.

� Simple

– Just iterate an existing coloring algorithm.

� Powerful

– Inspect the structure of an interference graph by trial coloring.

� 6% reduction on average in static spill costs.

– 20% increase on average by the existing algorithms.

� Up to 15% and on average 3% speed-up

– Up to 12% and on average 1% speed-up by the existing 
algorithms.



33

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Thank you!

� Questions?



CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Backup



35

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

Static Copy Costs (100% = w/o Splitting)

� 13% reduction compared with iterated coalescing.

� 15% increase compared with optimistic coalescing.

0
20
40
60
80
100
120
140
160
180
200

c
o
m
p
re
s
s

je
s
s

d
b

ja
v
a
c

m
p
e
g
a
u
d
io

m
tr
t

ja
c
k

h
s
q
ld
b

lu
in
d
e
x

G
e
o
. 
M
e
a
n

S
ta
ti
c
 c
o
p
y
 c
o
s
ts
 (
%
)

Splitting + iterated coalescing

Splitting + optimistic coalescing

Splitting + coloring-based coalescing (once)

Splitting + coloring-based coalescing (twice)


