
STATISTICALLY
REGULATING PROGRAM

BEHAVIOR VIA
MAINSTREAM COMPUTING

Mark Stephenson, Ram Rangan*,
Emmanuel Yashchin, and Eric Van Hensbergen

IBM Research Lab

Thursday, April 29, 2010

OUR WORK
THE ELEVATOR PITCH

• Build anomaly detection into a deployed application

• Flag the execution of the application if it appears to
be abnormal

• Give the user the ability to...

• adjust the meaning of “abnormal”

• decide how to proceed when flags are raised

Thursday, April 29, 2010

MOTIVATION
ANOMALOUS EXECUTION

•Attacks on vulnerable code

• Buffer overruns, value overflow and underflow, denial of
service, injection attacks, etc.

• Soft errors

Thursday, April 29, 2010

MOTIVATION
ANOMALY DETECTION

application

model of
normal
usage

Profile application with a
set of inputs to construct
a model of normal behavior

Thursday, April 29, 2010

MOTIVATION
ANOMALY DETECTION

•Models for anomaly detection are trained on a set of inputs
(called the training set)

•Generally, training with more inputs reduces false positives

•...but, increases the number of false negatives of the model

•Current systems don’t give the user a method
for adjusting the tradeoff between the two
“falses”

Thursday, April 29, 2010

MOTIVATION
ANOMALY DETECTION

•Models for anomaly detection are trained on a set of inputs
(called the training set)

•Generally, training with more inputs reduces false positives

•...but, increases the number of false negatives of the model

•Current systems don’t give the user a method
for adjusting the tradeoff between the two
“falses”

Thursday, April 29, 2010

MOTIVATION
ANOMALY DETECTION

•Models for anomaly detection are trained on a set of inputs
(called the training set)

•Generally, training with more inputs reduces false positives

•...but, increases the number of false negatives of the model

•Current systems don’t give the user a method
for adjusting the tradeoff between the two
“falses”

Thursday, April 29, 2010

MAINSTREAM COMPUTING
CONCEPTUAL FIGURE

95% of executions

99% of executions

gmail
bing

hulu

facebook
youtube

cnn

Thursday, April 29, 2010

MAINSTREAM COMPUTING
CONCEPTUAL FIGURE

Reject

95% of executions

99% of executions

gmail
bing

hulu

facebook
youtube

cnn

Thursday, April 29, 2010

MAINSTREAM COMPUTING
CONCEPTUAL FIGURE

Reject

95% of executions

99% of executions

gmail
bing

hulu

facebook
youtube

cnn

Thursday, April 29, 2010

OUR SYSTEM
MAINSTREAM COMPUTING

• Allow a user to say, “Ensure that this
execution conforms with 99% of the
usage patterns for the application”

• System constructs a model that is
statistically guaranteed to raise a flag at
most 1% of the times the application is
invoked

• Provide a single knob for each
application

• Allow the user to select what action is
taken when a flag is raised

Thursday, April 29, 2010

RECOURSE

• What should we do when the execution looks abnormal?

Thursday, April 29, 2010

HIGH LEVEL VIEW

• Collaborative approach

• A centralized server collects
runtime profiles from clients

• Centralized server uses
these runtime profiles to
generate constraint sets for
applications

clientserver

client

client

Thursday, April 29, 2010

clientserver

pfail = 3%

• Clients have two main tasks:

1.Ensure that server provided
constraints are not violated

2.Continually sample aspects of
execution for this invocation

CLIENT OPERATION

Thursday, April 29, 2010

client

ID RANGE

dim [1,3]

ix [-1,99]

j [0,99]

constraint set

server

pfail = 3%

• Clients have two main tasks:

1.Ensure that server provided
constraints are not violated

2.Continually sample aspects of
execution for this invocation

CLIENT OPERATION

Thursday, April 29, 2010

client

ID RANGE

dim [2,3]

ix [-1,52]

j [0,19]

runtime profile

ID RANGE

dim [1,3]

ix [-1,99]

j [0,99]

constraint set

server

pfail = 3%

• Clients have two main tasks:

1.Ensure that server provided
constraints are not violated

2.Continually sample aspects of
execution for this invocation

CLIENT OPERATION

Thursday, April 29, 2010

client

ID RANGE

dim [2,8]

ix [-1,52]

j [0,19]

runtime profile

server

• Server aggregates runtime profiles,
from the clients

• Creates constraint sets
with statistical bounds on
failure rates

• Can probabilistically
tolerate runtime profiles
from rogue users

SERVER OPERATION

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

• Server aggregates runtime profiles,
from the clients

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

• Separate runtime profiles into a
training set and a validation set

• These sets are disjoint

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

• Separate runtime profiles into a
training set and a validation set

• These sets are disjoint

...

training set

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

• Separate runtime profiles into a
training set and a validation set

• These sets are disjoint

...

training set validation set

...

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

• Create a model of nominal behavior
using runtime profiles in the training
set

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set
ID RANGE

dim [1,2]

ix [0,99]

j [1,99]

• Create a model of nominal behavior
using runtime profiles in the training
set

ID RANGE

dim [2,3]

ix [-1,10]

j [2,11]

U

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set
ID RANGE

dim [1,2]

ix [0,99]

j [1,99]

• Create a model of nominal behavior
using runtime profiles in the training
set

ID RANGE

dim [2,3]

ix [-1,10]

j [2,11]

ID RANGE

dim [1,3]

ix [-1,99]

j [1,99]

U =

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

ID RANGE

dim [1,12]

ix [1,50]

j [3,91]

!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

ID RANGE

dim [1,12]

ix [1,50]

j [3,91]

!
!
!
!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

ID RANGE

dim [1,12]

ix [1,50]

j [3,91]

!

!

!
!
!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

!

!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

ID RANGE

dim [0,11]

ix [1,50]

j [3,91]

!

!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

ID RANGE

dim [0,11]

ix [1,50]

j [3,91]

!

!

"
!
!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...

ID RANGE

dim [0,11]

ix [1,50]

j [3,91]

!

!

"

"

!
!

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...
!"!! " "! !!"

P̂fail =
Nfailed

Nvalidate
± ε

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...
!"!! " "! !!"

• This is only an estimate, the
accuracy of which depends on
Nvalidate

P̂fail =
Nfailed

Nvalidate
± ε

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...
!"!! " "! !!"

• We can find a statistical upper
bound for the failure rate by using
the well-known solution to the
polling problem

P̂fail =
Nfailed

Nvalidate
± ε

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

ID RANGE

dim [1,12]

ix [-2,99]

j [0,99]

constraint set

validation set

...
!"!! " "! !!"

SET Ntrain

100 35.42

200 22.98

...
...

...

3900 0.10

4000

P̂fail =
Nfailed

Nvalidate
± ε

P̂fail

Thursday, April 29, 2010

SERVER OPERATION

runtime profiles

...

...

training set

constraint set

validation set

...
!"!! " "! !!"

SET Ntrain

100 35.42

200 22.98

...
...

...

3900 0.10

4000

P̂fail =
Nfailed

Nvalidate
± ε

P̂fail

Thursday, April 29, 2010

PROTOTYPE
IMPLEMENTATION

• Augmented GCC (version 4.2) with a mainstream computing pass

• Pass inserts calls to a runtime library that simultaneously sample
execution and ensure constraints aren’t violated

• Object file constructor modified to initialize execution constraints

• Communication with server implemented as a daemon

• When user changes tolerances, daemon fetches latest constraint set
from the server

• Similarly, it periodically pushes client runtime profiles back to the server

Thursday, April 29, 2010

RESULTS

• Perform the following experiments

• False positive study

• Detecting exploits

• Detecting soft errors, failure oblivious execution, runtime
overhead

• We simulate a user community

} tradeoff

Thursday, April 29, 2010

 : FALSE POSITIVESP̂fail

!"##$%

&'(#)*

!" !#$%& "'(%)*++ ,)*% ,#$% -%*, .$!%'%%.*) .$!/$00 /1) 2" (13
45446

75446

&5446

85446

95446

:5446

;5446

<5446

=5446

>5446

745446

775446

7&5446

785446
&:; :7& 74&9 &49= 94>; =7>& 7;8=9

01
$.?
)*
@)
1/
*

Thursday, April 29, 2010

 : FALSE POSITIVESP̂fail

• Future work to reduce failure rates:

1.Only instrument likely indicator
variables

2.Use smoke detector model

!"##$%

&'(#)*

!" !#$%& "'(%)*++ ,)*% ,#$% -%*, .$!%'%%.*) .$!/$00 /1) 2" (13
45446

75446

&5446

85446

95446

:5446

;5446

<5446

=5446

>5446

745446

775446

7&5446

785446
&:; :7& 74&9 &49= 94>; =7>& 7;8=9

01
$.?
)*
@)
1/
*

Thursday, April 29, 2010

 : FALSE POSITIVESP̂fail

• Future work to reduce failure rates:

1.Only instrument likely indicator
variables

2.Use smoke detector model

!"##$%

&'(#)*

!" !#$%& "'(%)*++ ,)*% ,#$% -%*, .$!%'%%.*) .$!/$00 /1) 2" (13
45446

75446

&5446

85446

95446

:5446

;5446

<5446

=5446

>5446

745446

775446

7&5446

785446
&:; :7& 74&9 &49= 94>; =7>& 7;8=9

01
$.?
)*
@)
1/
*

Thursday, April 29, 2010

DETECTING EXPLOITS

app exp 256 512 1024 2048 4096 8192 16384

bc BV 100% 100% 100% 100% NA NA NA

compress BV 0% 0% 0% 0% 0% 0% NA

grep DOS 100% 100% 100% 100% 100% 100% 100%

gzip BV 100% 50% 40% 30% 10% 0% 0%

libpoppler UPF 100% 100% 100% 100% 100% 100% 100%

libtiff OVF 100% 100% 100% 100% 100% 100% 100%

man BV 100% 100% 100% 100% 100% NA NA

Thursday, April 29, 2010

RELATED WORK

• Forrest et al. The Evolution of System-call Monitoring. ACSAC 2008

• Perkins et al. Automatically Patching Errors in Deployed Software, SOSP 2009

• Demsky et al. Inference and Enforcement of Data Structure Consistency
Specifications, ISSTA ’06

• Key differences:

• Allow user to tradeoff false positives for false negatives

• Demonstrate ability to thwart several types of attacks and soft errors

• Analytically show that we can tolerate rogue users in the community

Thursday, April 29, 2010

CONCLUSIONS

• We need systems that can identify exploits in deployed code

• Allow users to specify failure rates they are willing to tolerate

• Mainstream computing can identify unanticipated, and
potentially malicious execution

• Buffer overruns, integer overflow, injection attacks, and DOS

• We show that it can even be used to identify soft errors

Thursday, April 29, 2010

Thursday, April 29, 2010

FUTURE WORK

• Only instrument the likely indicator variables

• Deploy in the “real world”

• Consider server workloads

• Improve the performance of the runtime

• Consider privacy concerns

Thursday, April 29, 2010

FILTERING VOLATILE
VARIABLES

• Our prototype samples nearly all variables

• Some variables (e.g., timing-based variables) are hard or
impossible to constrain with our baseline strategy

• We use a machine-learning strategy for filtering them out of
the constraint set

• Future work will obviate the need for this strategy

Thursday, April 29, 2010

TOLERATING ROGUE USERS

• Community may have malicious
users

• Our constraint set creation
approach attempts to limit the
number of runtime profiles in the
training set

• The fewer the runtime profiles in
the training set, the less likely it is
that the resultant constraint set will
be tainted by rogue runtime profiles

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2000 4000 6000 8000 10000 12000

P
ro

b
a

b
ili

ty
 o

f
ro

g
u

e
 s

a
m

p
le

 p
o

llu
ti
n

g
 a

s
s
e

rt
io

n

Sample set size for assertion computation

Pr=1e
-04

Pr=1e
-05

Pr=1e
-06

Runtime Profiles in Training Set

P
ro

b
ab

ili
ty

 o
f T

ai
nt

ed
 C

o
ns

tr
ai

nt
 S

et

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

• Sample and constrain the values of program “variables”

• Variables: application-level and many IR temporaries

• What we sample and constrain:

• Data-range: e.g., [32, 36]

• Constant bits: e.g., [00100TTT]

• Population count range: e.g., [1, 2]

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

Sa
m

p
lin

g

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

Sa
m

p
lin

g

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

! !

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

! ! !

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

! ! !

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

! ! !
!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

! ! !
!!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

! ! !
!!!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

[1,8] [0000TTTT] [1,1] 7 [00000111]

! ! !
!!!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

[1,8] [0000TTTT] [1,1] 7 [00000111]

!

!

! !
!!!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

[1,8] [0000TTTT] [1,1] 7 [00000111]

!

!

! !
!!!

!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
VALUE BASED

Data Range Constant Bits Population Count Value

[32,32] [00100000] [1,1] 32 [00100000]

[32,33] [0010000T] [1,2] 33 [00100001]

[32,36] [00100T0T] [1,2] 36 [00100100]Sa
m

p
lin

g

Data Range Constant Bits Population Count Value

[1,8] [0000TTTT] [1,1] 2 [00000010]

[1,8] [0000TTTT] [1,1] 8 [00001000]

C
o
ns

tr
ai

nt
ch

ec
ki

ng

[1,8] [0000TTTT] [1,1] 7 [00000111]

!

! "

! !
!!!

!

Thursday, April 29, 2010

ASPECTS OF EXECUTION
CONTROL-FLOW BASED

• Sample and check for simple control flow invariants

• Paths: sample and check value of a branch history vector and
given program points

• Calls: sample and check ID of caller in a callee’s header

Thursday, April 29, 2010

OVERHEAD OF SYSTEM

Overhead (factor over -O1)
Benchmark Full CF CS VB Selective

bc 10.8 2.5 1.0 8.6 3.2
bzip2 21.4 3.4 1.0 19.0 4.3

compress 8.5 2.2 0.9 7.5 4.4
grep 4.2 1.3 1.0 4.0 1.7
gzip 16.4 4.1 1.0 13.1 7.2
jpeg 29.8 3.1 1.0 27.7 4.2

libpoppler 9.8 0.8 1.0 9.2 0.9
libtiff 15.0 1.3 1.0 15.0 4.5

libvorbis 15.0 1.5 1.0 14.8 5.6
tar 1.1 1.0 1.0 1.1 1.0
wc 4.3 1.9 1.0 4.4 1.9

Table 2. Prototype instrumentation overhead.

variables (e.g. is variable a less than variable b?). Statistical data
mining techniques are then employed to identify the predicates that
are best able to predict program crashes. While these systems help
software developers pinpoint probable causes for critical software
failures, they cannot protect against undiscovered vulnerabilities.

Our work also leverages the software invariant detection ideas
pioneered in Daikon [17] and Diduce [18], and in later hardware-
based solutions [14]. While in some sense systems like Daikon and
Diduce identify mainstream behavior, the goals of our systems are
very different. In systems like Daikon, Diduce, and mainstream
computing, a user will encounter false positives. Because main-
stream computing is meant to protect deployed applications, we
allow users to specify a tolerance for failure with which they will
be comfortable. This aspect of mainstream computing uniquely al-
lows it to cope with malicious users.

“Taint analyses” of various forms have been proposed and used
to prevent untrusted data from affecting program execution (e.g.,
[8, 11, 31]). Similarly, Castro et al. propose a (necessarily conser-
vative) approach for detecting situations where the runtime flow of
data does not agree with the static data-flow graph [7].

Recently many promising approaches for tolerating software
bugs have arisen. Bouncer is a system that generates and uses fil-
ters to drop messages with malicious payloads before they can be
processed by a vulnerable program [10]. Rx is a checkpointing sys-
tem in which a program that encounters a failure is restored to a
previous checkpoint and rerun in the context of a different environ-
ment [28]. Locasto et al. use a reactionary approach to immunizing
an application community against software failures [24]. Once an
application instance detects an error, it communicates information
about the error to other application instances, which then use emu-
lation for the program methods involved in the failure.

Failure oblivious computing is an approach in which failures are
ignored, and values that directly led to the failure are set such that
computation can resume [29]. The Die Hard system probabilisti-
cally manages memory, which greatly increases the chances that
programs with memory errors will execute properly [5]. These sys-
tems often convert catastrophic errors into correct executions, or
executions with relatively benign issues.

ClearView is a collaborative system that relies on “monitors” to
detect buffer overruns and illegal control transfers [27]; and simi-
lar to statistical bug isolation [21], ClearView maintains likely in-
variants which it mines to automatically generate software patches
when a monitor is triggered. Because ClearView relies on monitors
to tell the system when a failure has occurred, it does not detect
arbitrary failures (such as injection and denial of service attacks).

Philosophically, mainstream computing is fundamentally differ-
ent than all of these works. It makes no assumptions about error
types, their root causes, or their implications. It simply enforces
mainstream behavior at runtime. This simplicity makes it a pow-
erful, generic tool, enabling it to detect a wide variety of software
failures (and often, long before actual data corruption happens).

A direct extension to failure oblivious computing that inspired
our work is presented in [13]. Demsky et al. use the Daikon invari-
ant system to determine invariants for the fields of critical program
structures. Upon violation of an invariant, the system will failure-
obliviously “repair” the error according to the invariants specified
for the offending field. The major differences between our work
and [13] are three-fold: 1) we allow users to bound false positive
rates based on their needs; 2) we demonstrate the ability of a main-
stream system to tolerate soft errors and several different kinds of
attacks; and 3) we describe a methodology for automatically ex-
tracting the invariants by leveraging a community of users.

6. Future Work
While we are encouraged by our prototype’s initial success, there
are still many open questions that must be answered before main-
stream computing is viable. First and foremost, it remains to be
seen how our prototype system would behave in a real deployment.
Though we went to great lengths to simulate a real user community,
our setup is limited in scope, and therefore our runtime profiles may
be biased. In order to collect unbiased data, future work will con-
sider larger scale deployments. That said, in some cases belonging
to a biased community may have significant security advantages.
At the extreme, future work will consider personalized servers that
cater constraint sets to an individual user.

In addition, work is already underway to broaden the types
of applications we consider. In particular, future work will con-
sider “server” applications which potentially run for weeks at a
time. Such applications may require periodically submitting par-
tial runtime profiles to the server, while simultaneously updating
the client’s constraint sets.

We will also investigate smarter merging and filtering method-
ologies to reduce p̂ for a given training set size. While a 1% toler-
ance for failure would be perfectly acceptable for many users (e.g.,
one-per-day usage would only prompt the user once every several
months), other users would find such tolerances unacceptable. In
addition, some users may object that mainstream computing’s sta-
tistical guarantees are not with respect to a single user, but with
respect to the collaborative community: a “unique” user in a homo-
geneous community may be frustrated by the mainstream comput-
ing approach.

Finally our prototype was not engineered to have low run-
time overheads. We will explore incorporating our ideas into a dy-
namic code generation system. Inlining our instrumentation code
and completely omitting unnecessary constraint checks would al-
low us to drastically reduce the overhead of the runtime system.
Furthermore, we will investigate the potential of sparse sampling
to reduce the overhead of collecting features. Liblit et al. show
that their approach reduces the overhead of sampling to a marginal
amount (< .05) for equally heavy weight instrumentation [23].3

7. Conclusion
This paper explores a novel approach to increasing security and re-
liability. By enforcing mainstream behavior—the level of which is
user definable—we show that a mainstream computing system can
effectively identify unanticipated and potentially malicious compu-
tation. To our knowledge, our system is the first that allows users
to specify the failure rates that they are willing to tolerate. Higher
tolerances for failure may provide more protection through stricter
regulation. Our approach allows mainstream computing to effec-

3 Such an approach would destroy the property that a constraint would fail
on a runtime profile iff it would have failed during the actual execution;
sparse sampling would therefore require reworking our constraint genera-
tion and validation approach.

9

Thursday, April 29, 2010

DETECTING SOFT ERRORS
Undetected and Failed
Undetected and Passed
Detected and Failed
Detected and Passed

 0%

 20%

 40%

 60%

 80%

 100%

b
c

b
zi

p
2

co
m

p
re

ss
d

jp
e

g
g

re
p

m
a

n
p

o
p

p
le

r
ta

r
tif

f
m

e
a

n b
c

b
zi

p
2

co
m

p
re

ss
d

jp
e

g
g

re
p

m
a

n
p

o
p

p
le

r
ta

r
tif

f
m

e
a

n

F
re

q
u

e
n

cy
 o

f
E

ve
n

t
w

h
e

n
 B

it
F

lip
p

e
d

Benchmark

Just Detecting Failure Oblivious

Thursday, April 29, 2010

