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Abstract 

Reducing the data cache stalls is getting more important as the gap between the CPU speed and the 

memory speed continues to grow. Many compiler-based techniques including prefetches have been 

proposed to mitigate the problem for numerical loops, but they are not very applicable to non-

numerical integer loops. One simple idea applicable even to those loops is separating cache-missing 

loads and their uses by as many as the cache miss penalties by scheduling the loads earlier. 

Unfortunately, naïve code motion of those loads would not work since they are likely to be stuck at 

the loop boundary before being separated enough from their uses. Moreover, moving the loads 

requires other instructions defining their operands to move as well, which would also block separation. 

In order to overcome these limitations, we propose separating them even across loop backedges and 

complex control flows. This can be implemented by employing the code motion techniques of 

enhanced pipeline scheduling, which can allow such separation. Our experimental results on the 

Itanium and the Open-64 show that the proposed technique can reduce the stalls, increasing the 

performance tangibly, for some integer benchmarks that suffer from the data cache misses seriously. 

 
 

1.  Introduction 

The CPU stalls caused by data cache misses take a significant portion of the running time for many 

programs. Since the gap between the CPU speed and the memory speed continues to grow, cache 

optimization has become an important issue in the compiler research. Many compiler-based cache 

optimization techniques have been proposed, such as increasing locality within loops [20,21], adding 

prefetches for array-accessing loops [10,11,12], and dynamic runtime optimizations [18,19]. Many of 

these techniques involve address determination using array index-based calculations, thus particularly 

effective for numerical, floating-point programs which process a large amount of data in the arrays. 

Unfortunately, these techniques are not very applicable to reducing cache stalls for non-numerical 

integer programs. These programs often include loops where it is not easy to determine the address of 

loads with a low overhead (e.g., pointer-chasing loops). Moreover, integer loops often include 

complex control flows which make the address determination even harder. These characteristics make 

those array index-based optimizations difficult to employ. 

For integer loops, it might be better to separate hot cache-missing loads and their uses by as many 

as the cache-miss cycles, instead of employing optimizations using index-based calculation. This can 

be simply achieved at the instruction scheduling phase of the compiler optimization, by setting the 

latency of those hot loads to their cache-miss cycles instead of the cache-hit cycles, which would 

delay the scheduling of those uses from hot loads. 

Unfortunately, this would not work as we expect, because naïve code motion of those hot loads 

would make them stuck at the loop boundary before being separated enough from their uses if they 



are located near the loop header. Moreover, moving the loads requires other instructions defining their 

operands to move as well, which would even limit enough separation. Finally, even if we delay the 

scheduling of uses, we cannot avoid a stall if we cannot fully schedule those newly-added slack cycles 

by other (useful) instructions. 

In order to overcome these limitations for separating the hot loads and their uses, we propose 

employing code motions across loop iteration boundaries. That is, we move those hot loads (and the 

instructions defining their operands as well) across the loop backedges so that they can be separated 

enough from their uses. Actually, this means executing the hot loads an iteration earlier than their uses, 

lengthening their distances. We can even move the loads more than once across the backedge (even 

passing thru their uses with a different target register), if executing the hot loads multiple iterations 

earlier is needed to lengthen the distance enough. In fact, this is exactly what software pipelining does. 

Therefore, we propose implementing the idea in the context of software pipelining, for the purpose of 

separating hot loads from their uses as well as for extracting instruction-level parallelism (ILP). For 

this we employ enhanced pipeline scheduling, a software pipelining technique based on code motions 

across loop backedges. Our preliminary experiments with the Open-64 compiler for the Itanium show 

some promising results for a subset of integer programs that suffer from cache misses seriously. 

The rest of the paper is organized as follows. Section 2 motivates the main idea of the proposed 

technique with some characteristic of hot cache-missing loads. Section 3 reviews briefly enhanced 

pipeline scheduling. Section 4 describes the proposed technique with its heuristics. The experimental 

results are described in Section 5. A summary follows in Section 6. 

 

2.  Separating Hot Cache-Missing Loads and their Uses across Loop Iterations 

In this section, we motivate the main idea of the proposed technique with an example. We describe 

some observation of the hot cache-missing loads and explain why the proposed technique is not trivial 

to implement, although the idea is simple. 

 

2.1 Hot Cache-Missing Loads 

Most CPUs these days employ a non-blocking cache [3]. When there is a cache miss caused by a 

load, the CPU does not stall right away but continues to proceed until the use of the load is 

encountered; at that point the CPU stalls until the data comes to the CPU. One popular way to exploit 

the non-blocking cache is employing the prefetch instruction [4,9,8,10,11,12]. For a hot cache-missing 

load, the compiler adds a prefetch that accesses the same cache line, so that the prefetch executes and 

misses the cache earlier than the load. This can make the cache-line available, hopefully by the time 

when the load executes, obviating or reducing the CPU stalls. Prefetches are known to be highly 

effective in array-based, numerical loops since it is relatively easy to calculate the array address of 

prefetches to be located in earlier iterations, based on loop indexes. 



Another way to exploit the non-blocking cache is separating the hot load and its uses enough, 

hopefully by as many as the cache miss cycles. This can make the cache miss latency be elapsed by 

the time when the use executes, obviating or reducing the CPU stalls [5,9,6,7,8]. We take this 

approach for handling integer loops where the calculation of load addresses is not straightforward. 

Unlike previous work, however, we extend the separation across the loop iteration boundaries and 

complex control flows in order to fully exploit the technique. 

Before we explain the main idea of the technique, we first describe our observation of hot cache-

missing loads in some of the integer programs. Figure 1 sketches one of the hot loops in the 164.gzip 

benchmark of SPEC CINT2000. It is a nested loop where the most frequent execution paths are 

composed of those in the outer loop body, which constitute a complex control flow as shown in Figure 

1. There is a hot load in the basic block (BB) at the loop header, where the cycle boundary for parallel 

execution in the Itanium machine is depicted by a horizontal line (==).  

 

 

Figure 1. A hot cache-missing load in the 164.gzip benchmark 

 

This load shows some typical characteristics of a hot load that can be found in integer loops. One 

characteristic is that there often is a tight data dependence chain from the loop entry to the source 

operands of the hot load. Each of those data dependent instructions constitutes one cycle in the 

scheduled loop, so moving the load in an earlier cycle requires moving the data dependent instructions 

as well, which is not easy since the chain often starts from the loop entry cycle. 

Another characteristic is that there can be a non-trivial control flow composed of branches and joins 

within the loop such that earlier scheduling of the hot load requires code motions across it. In Figure 1, 

for example, even if we can move the load (and their data-dependent instructions) across the backedge, 

we might need to move it across the complex control flow at the bottom of the loop to the BBs near 

the loop entry for enough separation. Some path might have data dependences to the chain, thus 



blocking the code motion, while others do not, thus allowing it, so it would be non-trivial to perform 

such a code motion efficiently with a minimal overhead of code duplication or recovery code for 

speculative loads (discussed shortly). 

Finally, the hot loads are likely to be located close to the loop entry as in Figure 1, rather than in the 

middle of the loop. Since a load located at the entry is executed more often than the one located in 

some path of the loop body, it is likely to cause more cache misses than others. Moreover, the loads in 

the middle of the loop often access the data located close to the one accessed by the load at the loop 

entry, so cache misses, if any, are likely to occur at the entry rather than in the middle of the loop. 

 

2. 2 Scheduling Hot Loads across Loop Iterations 

Our proposed idea is scheduling the hot load (and its data-dependent instructions) across the loop 

backedge (and across the control flow). This would overcome the obstacle of the loop iteration 

boundary when we want to separate a hot load from its uses. Figure 2 illustrates moving a load across 

loop backedge to separate it from its use. In order to maintain the semantic correctness at the loop 

entry, a bookkeeping copy of the load is made at the incoming edge to the loop. In fact, this code 

motion achieves software pipelining since it allows the load of the next iteration (iteration n+1) to 

execute instructions of the current iteration (iteration n) while the load of the first iteration (iteration 

1) is executed before entering the loop. 

     

Figure 2. Scheduling a hot load across the loop backedge 

 

There is a non-trivial issue in implementing this idea, though. As we saw in Figure 1, there can be a 

complex control flow in the loop body, so the load might need to move across the complex control 

flow. Global DAG scheduling techniques have been used for moving instructions across control flows, 

using speculative code motions across one target of a branch, join code motions above a join point, or 

code motions across both paths of a branch if data dependence allows, possibly combined with 

register renaming. So, if global scheduling can be applied across the loop backedge(s), we can move 

the hot the loads flexibly across backedges. One such a technique is a software pipelining technique 

called enhanced pipeline scheduling (EPS) [1, 2]. EPS achieves software pipelining via code motions 

across the loop backedge. So if we can employ EPS appropriately, we can use it for separating loads 

from their uses across iterations. In fact, such a separation is meaningful only when we can schedule 



other instructions to fill the cycles between the load and the use, so our proposed cache optimization 

should be carried out in the context of scheduling, anyway. So we should adjust EPS for separation of 

loads and uses as well as for extracting ILP. 

 

3.  Overview of Enhanced Pipeline Scheduling  

Previous section motivated the idea of separating hot loads and their uses across loop iterations and 

control flows, and proposed implementing the idea in the context of EPS, a software pipelining 

technique based on global code scheduling. We overview EPS in this section. 

 

3.1 Code Motion-based Software Pipelining 

EPS achieves software pipelining by moving operations across the backedge of the loop which has 

the effect of moving operations between loop iterations. This is quite different from the approach used 

by modulo scheduling (MS) [23] which places operation in a flat schedule with a pre-computed 

minimum initiation interval (MII). Due to its code motion pipelining, EPS can pipeline any type of 

loop including those with arbitrary control flows or outer loops. It should be noted that EPS is not 

explicitly guided by any MII as in MS. Rather, EPS blindly aims for a tight II by repeated greedy 

DAG scheduling (which will be described shortly).  

Figure 3 shows the EPS process for an example loop, which performs an add, a load, and a branch. 

During the first stage of EPS in Figure 3 (a), the 1st cycle of the 1st iteration is scheduled only with 

x=x+4 as shown in Figure 3 (b). In the second stage, we schedule the second cycle of the 1st iteration. 

In order to generate increasingly compact groups as software pipelining proceeds, EPS is performed 

as follows: after a cycle is scheduled in a stage, all instructions scheduled in that cycle are available 

for code motion in the next stages. In fact, this is done by defining a DAG on the CFG of the loop, 

starting right after the previous cycle extending across the backedge and ending at the bottom of the 

previous cycle and by performing DAG scheduling to create a parallel group at the root of the DAG, 

which comprises the current cycle. Figure 3 depicts the DAG defined in each stage with unshaded 

edges. EPS repeats the DAG scheduling until the backedge is encountered. In Figure 3 (c), it is 

acceptable to move x = x+4 from the second iteration across the backedge to the second cycle of the 

1st iteration as shown in Figure 3 (d). Moving the operation requires renaming since x is live at the 

exit, so we schedule it with a new target register x’ after leaving a copy x=x’ at the original location. 

In addition, since there is an edge that enters the loop from outside, a copy of the moved instruction is 

made at the entry so the instruction is still executed when the loop is entered.  

In the third stage in Figure 3 (e), after scheduling cc=(y==0), the load and add instructions are 

moved across the backedge to the third cycle of the 1st iteration from the second and third iterations, 

respectively, as shown in Figure 3 (f). The target of the add is renamed this time to x” and its source 

operand is forward substituted when it passes through the copy x=x’. Since the backedge is 



encountered, we can stop the EPS process now. The three data instructions that were originally 

constrained by strict data dependences can now be executed in parallel.  

 

 

Figure 3. EPS Process for an example loop 

3.2 Global DAG Scheduling 

Each stage of EPS defines a DAG and an empty parallel group at the root of the DAG, which is 

then scheduled by a global DAG scheduling technique. Any global scheduling technique can be used, 

but we employ an aggressive one called selective scheduling [2]. It first computes available 

instructions that can move into the parallel group and remove inappropriate ones with a filtering 

heuristic. Then it chooses the best instruction and schedules it. Selective scheduling repeats this 

process until there are no more available instructions to move or the group is full. 

Selective scheduling employs aggressive code motion techniques. Renaming is performed when 

needed in the context of code motion using copies. For example, when x=x+4 cannot be moved due to 

its target register x (e.g., x is live at the other target of a branch when we want to move the instruction 

speculatively above the branch), its target is renamed to x’ and a copy instruction copy x=x’ is left at 

the original place of the instruction as we saw in Figure 3. Although renaming leaves behind copies, 

they do not impose any true data dependences during subsequent code scheduling with the use of a 

technique called forward substitution. For example, if y=load(x) passes through x=x’ during its code 

motion, it becomes y=load(x’) (actually, both operations can also be grouped together for parallel 

execution after this transformation). It is known that renaming and forward substitution are 

successfully employed for software pipelining in EPS [2]. 

Speculative code motion can be performed across one target of a branch, and join code motion can 

be performed across a join point after making a bookkeeping copy. In Figure 4 (a), speculative code 

motion of y=w*w and join code motion of z=x+1 across the left path of the branch lead to a schedule 

in Figure 4 (b). If data dependences allow, however, it would be better to perform non-speculative 



code motion across both targets of a branch, as u=u+1 in Figure 4 (c) (which we call unification), 

instead of speculative code motion or join code motion. Such a unified instruction is useful no matter 

which path is taken at execution time. Similarly, it would be desirable to perform “partially”-

speculative code motions that speculate fewer branches since they have a better chance of being 

useful. So it is a good heuristic to schedule as many useful instructions as possible. 

 

 

Figure 4. Speculative code motion, join code motion, unification 

 

Selective scheduling estimates the degree of speculativeness for each available instruction and 

chooses the one whose degree is small in order to implement the usefulness heuristic. It then 

schedules in a way of minimizing speculative code motion or join code motion. In Figure 5 (a), for 

example, selective scheduling can move y=x+4 to the parallel group at the root of the DAG, while 

speculating only one branch and leaving only one bookkeeping copy, as shown in Figure 5 (b). 

 

 

Figure 5. Performing partially-speculative code motion with a minimal booking copy 

 

4.  Adjusting Enhanced Pipeline Scheduling for Cache Optimization  

Previous section overviewed the EPS with its aggressive DAG code motion techniques. This 

section describes how we adjusted EPS for cache optimization as well as for increasing ILP. 

 

4.1 Increasing the Load Latency 



The first update needed is increasing the latency of the hot loads, assuming that they will miss the 

cache. In Itanium, for example, the L1 cache hit latency is one cycle while the L1 cache miss latency 

is five cycles. So we set the latency of the hot loads to five cycles instead of one cycle, so that EPS 

schedules their uses five cycles later after the hot loads are scheduled. We hope that the newly added 

four slack cycles are scheduled by other useful instructions; otherwise we will still have a stall. 

Increasing the load latency may affect the ILP, though. If the hot load is on the critical path, 

delaying the scheduling of its uses will increase the length of the critical path, lowering the ILP. For 

software pipelining of loops, we can compensate the loss of ILP by overlapping more iterations which 

can achieve an II similar to the one when the load latency is one cycle, unless there is a cyclic data 

dependence including the load and it constitutes the II of the loop. For the case of EPS, this means 

additional code motions across the loop backedges. In order to overlap the hot load enough across the 

backedges, the hot load and its dependent instructions should be scheduled aggressively, which can 

lead to more complex and worse code, in theory. So code motions should be controlled somehow. 

On the other hand, the cache benefit caused by longer load latencies might be higher than its ILP 

penalty. That is, there is a better chance of scheduling useful instructions for the newly added cycles 

with EPS, while no useful work is possible if the CPU were stalled during those cycles. Therefore, it 

might be a useful strategy to pursue scheduling the increased cycles even if there is some ILP loss. 

 

4.2 Speculative Loads 

Speculative code motion of loads is important in increasing ILP since loads are often on the critical 

paths so their earlier execution affects the performance. There is one problem for the speculative load, 

though, which is when the speculative load causes an exception by accessing an illegal address or 

causing a page-fault. If the load came from a taken path, it is a legitimate exception. However, if the 

other path is taken at execution time, the exception should be ignored since it would not occur in the 

original, non-scheduled code.  

For speculative exception handling, Itanium supports a speculative load instruction and a check 

instruction, so that compiler generates a speculative load instruction when a load moves above a 

branch speculatively, while leaving a check instruction in the original location of the load, as shown in 

Figure 6. The compiler also generates a recovery block, composed of the load instruction and any 

chain of instructions data-dependent on the load which also moved above the check instruction. If an 

exception condition is detected at the speculative load, it does not raise an exception right away. If the 

original path is not taken, then there is no problem. When the original path is taken and the check 

instruction is executed, a jump is made to the recovery block where the load is executed again, a 

genuine exception is raised, and possibly, the chain of data-dependent instructions are executed as 

well, which handles the exception precisely. 



 

Figure 6. An example of speculative load 

 

Although speculative loads allow earlier execution of loads, they also affect the ILP negatively. 

Since the check instruction works as a branch instruction, it affects code motion. Also, the recovery 

block is not scheduled, so if the recovery block is really executed, it is executed sequentially without 

any parallel execution. This is the reason why the original EPS on top of Open-64 generates 

speculative loads conservatively, such that only when the number of data dependent instructions on 

the load is small, the speculative load is generated. 

For our separation of hot loads across backedges, however, we must generate a speculative load 

since the load must move above the loop exit branch. So, we allow speculation for the hot loads 

aggressively. Figure 7 shows the example of speculative loads for the 164.gzip loop we discussed in 

Section 2. This loop is the hottest loop in the benchmark, where the hot loads in the loop cause 80% 

of the data cache misses and 70% of the stalls for the benchmark. It cannot be handled by modulo 

scheduling due to control flows. Among the hot loads in the loop, the one at the loop entry BB is the 

hottest. This load is scheduled across the backedge of the loop. Since the loop exit branch is 

speculated during the code motion, a check instruction is left at the original location of the load, while 

the instruction is converted into a speculative load (we do not show the recover code for simplicity). 

Since the use of the load is delayed to be scheduled, it actually remain in the entry BB, so there is a 

control flow and other instructions between the load and the use, which avoids some stalls (if we 

allows more aggressive code motion of the load, it can move to the entry BB where the use is located, 

being unified across the control flow, except for the edge coming from the inner loop where a 

bookkeeping copy of the load is made. However, we do not allow such a code motion in the current 

heuristic due to the side effect, as will be discussed in Section 4.3). 



 

Figure 7. Speculative load in the 164.gzip example loop. 

 

4.3 Adjusting Scheduling Heuristics 

Although many of the global code motions in EPS are powerful and aggressive in extracting 

parallel instructions for a given cycle, they are involved with some side effect that can negatively 

affect the quality of other cycles. So if we perform such code motions excessively, it may reduce the 

overall quality of the generated code and the final ILP, unless there are abundant resources.  

For example, renaming can contribute more to increasing the register pressure by lengthening the 

live range, in addition to generating additional copies, which would take resources unless being 

coalesced away. Moreover, speculative loads can be problematic as we discussed in Section 4.2. 

Join code motion introduces bookkeeping copies at the incoming edges to the join point, which can 

affect the code quality of those edges negatively. Figure 8 illustrates the negative impact of a join code 

motion. When z=x+1 moves across the left edge of the join point to fill otherwise idle resource at the 

top BB, a bookkeeping copy of it should be added at the right edge of the join point. If there is no 

reduction of cycles for the original BB of z=x+1 (located at the bottom), this will increase one cycle 

for the right path. This can cause a serious penalty if there are many such code motions and if the right 

path is taken frequently at runtime. In fact, we could observe the problem in an 181.mcf loop where 

there is a complex control flow which requires many code motions to pass above multiple join points, 

generating excessive bookkeeping code.  

Speculative code motion from cold paths to hot paths in a loop can also cause a problem by 

increasing the II of the loop. In 164.gzip, for example, excessive speculative code motions often place 

useless instructions to the hot paths, creating extra cycles and thus leading to poor performance. 



 

Figure 8. Negative impact of join code motion 

 

In order to avoid excessive code motions, the original EPS uses a strict filtering heuristic when a 

parallel group is scheduled in each stage of EPS. That is, an available instruction is filtered out if the 

number of join points that it should pass to move from its original location to the group exceeds some 

predefined number. Similarly, an available instruction which speculates more than a predefined 

number of branches is filtered out. 

From the point of separating a hot load and its uses, however, it would be desirable to loosen the 

filtering heuristic, so that the hot load and its data-dependent chain of definitions can move more 

aggressively, possibly across the loop backedges, and other instructions can also move aggressively to 

fill the added cycles between the load and its uses.  

In order to compromise between the two points, we use the following heuristic. We classify 

instructions in a loop into two groups. The first group consists of the hot loads and their data-

dependent chain of definitions, which we can hot-load-related instructions. The second group includes 

the rest of the instructions, which we call non-related instructions. We apply loose filtering heuristics 

for the first group so as to encourage aggressive code motions, while we apply the original, strict 

heuristic for the second group in order to avoid excessive code motions. For the example code 

fragment in Figure 9, the first group and the second group are depicted for a given hot load instruction. 

Only the first group will be scheduled aggressively. 

 

            

Figure 9. Load-related instructions and non-related instructions 

 



5.  Experimental Results  

  Previous section described the enhanced version of EPS for the cache optimization as well as the 

ILP optimization. In this section we report our preliminary evaluation results of the enhanced EPS to 

understand its impact on the cache performance and the overall performance. 

 

5.1 Experimental Environment 

We performed the experiment on a real machine with a product-level compiler. Our target machine 

is 900Mhz Intel Itanium2 processor and the compiler is the Open-64 version 3.0 [16]. We 

implemented EPS on top of the Open-64 compiler, and the EPS phase is located between the global 

instruction scheduling (GIS) phase and the register allocation phase of the Open-64 compiler. 

Itanium2 has a 256KB L1 data cache. The latency of integer loads is one cycle for an L1 cache hit, 

5 cycles for an L1 cache miss, and 11 or more cycles for an L2 cache miss. Itanium2 can issue up to 6 

instructions in each cycle, where two loads and one floating-point instruction can execute in parallel. 

Our benchmarks include some of the integer programs in SPEC CINT2000 and CINT2006 [17].  

We identified hot cache-missing loads via profiling using the performance monitoring unit (PMU) 

of Itanium2 [13]. The PMU can count and monitor the L1 data cache misses during the execution of 

an application program. It can also provide useful profiling information. 

Using the PMU we counted the cache stall cycles generated by each memory instruction and 

identified those load instructions whose stall cycle overhead takes more than 1% of the running time. 

A load instruction not located in a loop is excluded, so is a load which is part of all cyclic data 

dependences in a loop since such a load is not movable and there is no opportunity for stall reduction. 

The final hot load instructions are marked so that EPS can identify them. 

Table 1 shows the number of hot loads in each benchmark and the number of loops that include 

those hot loads, thus the target of our enhanced EPS (no other loops are touched by EPS).  

Figure 10 depicts the ratio of the total stall cycles and the stall cycles of hot loads, compared to the 

total running time as 100% for each benchmark. The stall cycles of hot loads constitute 12% and 55% 

of the running time for 164.gzip and 181.mcf, respectively, while it takes 2~3% for other benchmarks. 

 

Table 1.  Number of hot loads and number of loops including them. 

Benchmark # of Hot loads # of loops Benchmark # of Hot loads # of loops 

164. gzip 1 1 254. gap 1 1 

175. vpr 2 1 256. bzip 1 1 

176. gcc 2 1 300. twolf 2 1 

181. mcf 6 3 445. gobmk 1 1 

197. parser 2 1 456. hmmer 4 1 
 



 

Figure 10.  Ratio of the stall cycles to total execution time 

 

5.2 EPS Configurations 

We experimented with four configurations of EPS, compared to the base case where EPS is not 

turned on in Open-64, as follows: 

① Base 

Open-64 –O3 with EPS disabled. Only modulo scheduling and GIS [22] of Open-64 is turned on.  

② EPS-no-cache: EPS without cache optimization 

The original EPS is turned on for the target loops without any cache optimization. Actually, EPS is 

applied only to those loops that include hot loads in order to make a fair comparison with the cache-

optimizing EPS. We also apply EPS to those loops previously handled by modulo scheduling if they 

include hot loads, after disabling modulo scheduling; if they are if-converted, we disable if-conversion 

as well since EPS does not currently handle if-converted loops appropriately. This can make ② 

perform worse than ①. Actually, there is no reason for EPS to perform worse than modulo scheduling 

for single-path loops, if EPS were guided by a pre-computed II as in modulo scheduling. 

③ EPS-strict: EPS with increased load latencies and strict filtering heuristics 

This is the same as ②, except that the load latency of hot loads is increased from one cycle to five 

cycles. We use the same scheduling heuristics as in the original EPS, so the same strict filtering 

heuristics are applied to load-related instructions as well as others. We can evaluate if the existing 

heuristics are enough to separate hot loads from their uses and to fill the added cycles. 

④ EPS-selective: EPS with selective filtering heuristics 

This is the same as ③, except that loose heuristics are applied to load-related instructions while 

strict heuristics are applied to others. This is the heuristics that we developed in Section 4.3 and it is 

expected to separate the loads from their uses enough, while filling the added slack cycles with a 

reduced side effect of aggressive code motions. 



⑤ EPS-loose: EPS with loose filtering heuristics 

This is the same as ③, except that loose heuristics are applied to both load-related instructions and 

others. This is expected to lead to excessive code motions, which can separate the loads from their 

uses well, but can affect the overall schedule negatively. 

 

5.3 Results 

Figure 11 shows the ratio of the total stall cycles for each configuration compared to Base as 100%. 

EPS-no-cache would affect the cache stalls little since it focuses only on ILP without any 

consideration of cache stalls. It may even increase the cache stalls as in 175.vpr and 300.twolf, by 

scheduling hot loads and its uses closer, by cross-iteration code motions or aggressive code motions 

across control flows that were not present in Base. 

The remaining three configurations are with the increased load latency. As we move from ③ to ⑤, 

we loosen the filtering heuristics, which tends to reduce the stall cycles. This is so since more 

aggressive code motions that would otherwise be prohibited due to strict filtering heuristics allow 

better separation of loads and their uses and better filling of the slack cycles. Generally, EPS with 

cache optimizations could reduce the stalls of Base and EPS-no-cache tangibly in most benchmarks. 

 

Figure 11. Ratio of total stall cycles (lower is better) 

 

 

Figure 12. Ratio of total execution cycles (lower is better) 



Figure 12 shows the ratio of the total execution cycles for each configuration compared to Base as 

100%. EPS-no-cache which performs EPS only for those loops with hot loads does not show a better 

performance than Base or is even tangibly worse (i.e., 175.vpr). When we perform EPS with cache 

optimizations, there is a tangible performance improvement compared to Base in 164.gzip and 

181.mcf, where the cache stall cycles take a significant portion of the running time (see Figure 10). 

The improvement is actually made only in EPS-selective, though, and both EPS-strict and EPS-loose 

show worse results. This indicates that loose filtering for load-related instructions and strict filtering 

for others is effective since it compromises between cache stall reduction and ILP. 

For other benchmarks, there is little performance benefit over Base, which seems to be due to the 

tiny portion of stall cycles compared to the total execution cycles, hence little opportunity for 

performance improvement using cache optimization. Compared to EPS-no-cache, however, 175.vpr 

and 300.twolf show some tangible improvement, and their performance results are somewhat 

consistent with the stall cycle results. In fact, many benchmarks show a similar pattern between the 

stall cycles graph in Figure 11 and the execution cycles graph in Figure 12 for the four configurations, 

indicating that a correlation exists between cache stall reduction and performance improvement.  

One thing to note from the graphs is that there are some cases where the cache stall cycles reduce 

tangibly when we move from strict filtering (③) to loose filtering (⑤), yet the execution cycles does 

not reduce or even increase tangibly. We found that some of these are due to the overhead caused by 

more aggressive code motions such as increased register pressure, more duplication at the join points, 

and negative effects of speculative loads, as we discussed in Section 4.1. 

For EPS-selective, we counted the number of instruction groups (cycles) remaining between the hot 

load and its uses to check if EPS-selective can fill the slack cycles effectively so as to make enough 

distance between them to avoid stalls. Because there can be multiple paths from a hot load to its uses, 

we counted instruction groups for each path and calculated the weighted average using path profile, 

which is depicted in Table 2 as the average distance between the hot load and its uses. 

 

Table2. Estimation of Average Distance (cycles) between hot load and its uses. 

Benchmark Distance  Benchmark Distance  

164. gzip 2.0 197. parser 2.4 

175. vpr 2.0 254. gap 1.0 

176. gcc 2.0 256. bzip2 3.0 

181. mcf - loop1 10.9 300. twolf 1.4 

181. mcf - loop2 4.4 445. gobmk 5.0 

181. mcf - loop3 3.0 456. hmmer 1.5 
 

 

Table 2 shows that EPS-selective could successfully fill the instruction groups for 181.mcf, 



256.bzip2, and 445.gobmk since the distances are more than three, which would be the reason for the 

stall reduction depicted in the Figure 11. For the 164.gzip, the distance is relatively small (as we can 

see from Figure 7), but the loop iterates heavily, which leads to its high stall reduction. On the other 

hand, the distance is relatively big in 197.parser, yet the original ratio of stall cycles caused by the hot 

loads is trivial, so the stall reduction is also small. It should be noted that load-use distance would be 

one cycle if we apply EPS-no-cache, so they would lead to five-cycle stalls for every L1 cache miss. 

We analyzed 164.gzip further to understand the performance impact of the balance between ILP 

and stall reduction. In order to see the impact of the scheduling heuristics on ILP, we calculate the 

average, weighted II for the hot paths in its hot loop for each heuristic, as shown in Table 3. Although 

there are several paths in the loop, hot paths of the loop take over 90% of overall execution time. 

 

Table3. Estimations of II of hot paths in 164.gzip 

Base EPS-no-cache EPS-strict EPS-selective EPS-loose 

6 6 7 6 11 
 

 

In case of EPS-strict, the hot-load is not pipelined (i.e., not scheduled across the backedge) as in 

Base because of its strict filtering heuristic. So, we cannot separate the load and its uses effectively, 

and the slack cycles are not hided across iterations; they are scheduled by some useless instructions 

from infrequent paths, which increases the II only without a big stall reduction. 

EPS-selective and EPS-loose could pipeline the hot load, thus reducing stalls significantly while 

hiding the slack cycles across iterations. For EPS-loose, however, the II increases seriously, offsetting 

the benefit of stall reduction and lengthening the execution time. Since EPS-loose schedules 

instructions too aggressively, instructions from the infrequent paths are scheduled to the frequent 

paths. Actually, increasing the II by one cycle increases the execution time by 3.5% in 164.gzip, so the 

increased II affects performance. Considering the performance gain from stall reduction in 164.gzip is 

a maximum of 5%, scheduling the loop without increasing II is as important as making enough 

distance between the load and its uses. 

 

6. Related Work  

Exploiting non-blocking caches by increasing load latencies for compiler scheduling have been 

researched previously. 

Abraham et al. found that a fraction of memory load instructions are responsible for the majority of 

cache misses from a profile of SPEC89 benchmarks [5]. So they set the latency of such loads to the 

cache miss latency while setting the latency of others to the cache hit latency, and perform instruction 

scheduling as we did. Unfortunately, they could not achieve any performance benefit because the 

added cycles cannot be filled by useful instructions. In our case, software pipelining and aggressive 



scheduling across control flows allows more effective filling of those added latencies. 

Kerns and Eggers introduced variable latencies for load instructions based on their load-level 

parallelism and data dependences, and proposed balanced scheduling, an updated list scheduling 

considering variable latencies [6]. Although balanced scheduling outperforms other list scheduling 

approaches such as greedy scheduling or lazy scheduling, it is a basic block scheduling. 

Winkel researched a cache-miss-latency-aware modulo scheduling on Itanim2 with a production 

compiler [7]. Their modulo scheduler could achieve enough load-use distances without increasing II, 

thus improving cache stalls without affecting ILP. However, it targets only loops with a (if-converted) 

single basic block, thus not applicable to loops with control flows such as those hot loops in 164.gzip 

and 181.mcf. Sánchez and González performed a similar work on modulo scheduling [8].  

Choi introduced a PMU-profile-based cache optimizations using prefetches and separation of load 

and its uses [13]. Although they did not describe the details of the experiments, the separation did not 

show any tangible performance improvement while showing good results with prefetches. We believe 

they did not consider aggressive code motion techniques for the separation, as in our paper. 

 

7.  Summary 

We proposed a cache-miss-latency-aware EPS, which attempts to separate hot loads and their uses 

in integer loops using aggressive code motion techniques of EPS. It balances between cache stall 

reduction and ILP so as not to affect the II due to too-aggressive scheduling heuristics for separation. 

We could observe some promising, preliminary results for a few integer benchmarks which suffer 

from data cache misses seriously. And our analysis shows that the proposed technique works as 

intended for reducing the stalls without affecting the II. In fact, if the other benchmarks were also 

suffering from cache misses more seriously, we could observe more cases of performance 

improvement since their cache stalls reduce with the proposed EPS. We need to work on further to 

develop it as a more generally-applicable technique for integer loops. 
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