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The performance of modern microprocessors significantly depends on memory latency. Besides 

caches which greatly help to hide the latency for programs with spatial and temporal locality, a large number 

of methods and techniques are proposed to enhance the prefetching of data with regular access patterns. 

However, there are a lot of applications which lack locality or work with sophisticated data structures based 

on pointers. Usually pointer-based applications do not exhibit enough regularity or it’s impossible to predict 

the next address until the content of the current is read. In recent years many papers have emerged which 

introduce different enhancements to compiler and memory models. These novelties aim to analyze statistics 

gathered during the execution of pointer-based applications and then to issue prefetches when a traversal of 

linked data structures (LDS) is recognized. These papers mainly discuss a cooperative approach where a 

compiler marks LDS traversals and a special unit implemented in the architecture executes them 

speculatively. 

Our work is also devoted to the problem of tolerating memory latency in pointer-based applications. 

We propose a novel technique of predicting addresses used in LDS traversal and we suppose that 

implementation of our technique is much easier and more efficient compared to existing methods as it doesn’t 

require elaboration of new CPU hardware. 

The background of the method we propose lies in our study of SPEC CPU2000. Taking into account 

applications that suffer greatly from cache misses not overcome by regular data prefetching (particularly 

181.mcf and 254.gap) we discovered/ascertained/established the following: if one tries to examine the 

difference between addresses with which LDS traversal operates on i
th
 and (i+k)

th
 iteration of a loop it will 

see that there are not more than 3 prevailing values of the difference ( 3,2,1, ii ). These values remain 

during the whole execution of the program and do not depend on the conditions in which the loop is running. 

In practice this means that we should get these values once during program execution and it’s then possible to 

use them for prefetching and if something unexpected happens with LDS and these values are changed, it is 

necessary to get them again. 



Taking into account these considerations we have developed our cooperative method, which consists 

of two parts:  

1. We add a new instruction which we call IsOperandsNotReady(TargetInstruction). This instruction 

returns TRUE if any of the operands of TargetInstruction are not ready and otherwise FALSE. It is 

always scheduled together with TargetInstruction in the same wide instruction and requires 1 logical 

unit. 

2. The compiler creates additional code (Fig. 1) in the program which processes result of 

IsOperandsNotReady. The code consists of the following parts: 

a. for each load instruction (LD) which is considered to be a part of LDS traversal kernel we 

create a global array for keeping 3 most popular 3,2,1, ii  and their frequencies sorted by 

frequencies;  

b. we keep a history of addresses for the load for D iterations, where D is calculated as 

prefetching distance;  

c.  in the preloop we load all elements of the array to registers (
i  – is the register with the 

value of 
i ) ; 

d. in the loop head we create prefetches for ( iA  ) where A is the address of the load 

instruction on the current iteration; 

e. after the load instruction we add IsOperandsNotReady(LD) and branch which transfer 

control to a compensating node;  

f. in the compensating node we calculate S – the difference between current load address and 

its oldest retained address, then we search for whether there is 
i  with an equal value and if 

there is, we increment the value of register which keeps its frequency. If there is no such i  

we initialize a new register with S and set a frequency register to one, but the number of these 

newly initialized registers are limited. If the frequency of S becomes greater than that of the 

previous register we swap them, thus doing a “lazy bubble sort”; 



g. finally, in the postloop we save values of 3 top 
i  and their frequencies in the array. 

                                       
Figure 1. Code transformation 

The method described above was evaluated on a computer with the Elbrus microprocessor developed by JSC 

“MCST”. The microprocessor has EPIC architecture, 4-way associative L2 of 256 KB, 64-byte cache line, 4 

load/store units. The area of applicability of the method was limited to loops with a high number of iteration 

to prevent augmentation of overheads over the whole program. Though the method did not apply in all hot 

spots due to different limitations, it reduced execution time of 181.mcf by 15% and 254.gap by 4%. These 

results are comparable to that shown by most recent techniques but the method itself is easier to implement 

due to a very slight modification of the architecture. 

LD r1 → r1 

ST arr[i] ← di 

ST arr[i+1] ← fi 
 

 

LD arr[i] → di 

LD arr[i+1] → fi 
 

LD r1 → r1 

HISTORY(r1) 

PREFETCH(r1+d1) 

PREFETCH(r1+d2) 

PREFETCH(r1+d3) 

IsONR(LD) → P 

BRANCH cn P 

SUB r1, ri → vi 

SEARCH(vi) in di 

INCR(fi) 

SWAP(di, di-1) 

MOV r1i → ri 

… 

MOV r1i+k → r(i+k) 

HISTORY(r1) 
 

cn – compensating node  



 


