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AMD Opteron
Dual Core

Intel Montecito
1.7 Billion transistors

Dual Core IA/64
Intel Tanglewood
Dual Core IA/64

Intel Pentium Extreme
3.2GHz Dual Core

Intel Tejas & Jayhawk
Unicore (4GHz P4)

Intel Dempsey
Dual Core Xeon

Intel Pentium D
(Smithfield)

Cancelled

Intel Yonah
Dual Core Mobile

IBM Power 6
Dual Core

IBM Power 4 and 5
Dual Cores Since 2001

IBM Cell
Scalable Multicore

Sun Olympus and Niagara
8 Processor Cores 

MIT Raw 
16 Cores

Since 2002

… 1H 2005 1H 2006 2H 20062H 20052H 2004

Multicores are coming! 



What is Multicore?

Multiple, externally visible processors on a 
single die where the processors have 
independent control-flow, separate internal 
state and no critical resource sharing.

Multicores have many names…
Chip Multiprocessor (CMP)
Tiled Processor
….



Why move to Multicores?

Many issues with scaling a unicore
Power
Efficiency 
Complexity
Wire Delay
Diminishing returns from optimizing 
a single instruction stream
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Impact of Multicores

How does going from Multiprocessors to 
Multicores impact programs?

What changed?

Where is the Impact?
Communication Bandwidth
Communication Latency



Communication Bandwidth
How much data can be communicated 
between two cores?

What changed?
Number of Wires

IO is the true bottleneck
On-chip wire density is very high

Clock rate
IO is slower than on-chip

Multiplexing 
No sharing of pins

Impact on programming model?
Massive data exchange is possible
Data movement is not the bottleneck 

locality is not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X



Communication Latency
How long does it take for a round 
trip communication?

What changed?
Length of wire

Very short wires are faster
Pipeline stages

No multiplexing 
On-chip is much closer

Impact on programming model?
Ultra-fast synchronization
Can run real-time apps 
on multiple cores 

50X

~200 Cycles ~4 cycles



Past, Present and the Future?
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When is a compiler successful as 
a general purpose tool?

General Purpose
Programs compiled with the compiler 
are in daily use by non-expert users
Used by many programmers
Used in open source and commercial 
settings

Research / niche
You know the names of all the users



Success Criteria 

1. Effective
2. Stable
3. General
4. Scalable
5. Simple



1: Effective

Good performance improvements on most 
programs

The speedup graph goes here!



2: Stable

Simple change in the program should not 
drastically change the performance!

Otherwise need to understand the compiler 
inside-out
Programmers want to treat the compiler as a 
black box



3: General
Support the diversity of programs

Support Real Languages: C, C++, (Java)
Handle rich control and data structures
Tolerate aliasing of pointers 

Support Real Environments
Separate compilation
Statically and dynamically linked libraries

Work beyond an ideal laboratory setting



4: Scalable 
Real applications are large!

Algorithm should scale
polynomial or exponential in the program size doesn’t work

Real Programs are Dynamic 
Dynamically loaded libraries 
Dynamically generated code

Whole program analysis tractable?
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Windows OS 



5: Simple 
Aggressive analysis and complex transformation lead to:

Buggy compilers!
Programmers want to trust their compiler!
How do you manage a software project when the compiler is broken?

Long time to develop

Simple compiler ⇒ fast compile-times 
Current compilers are too complex!

~ 300,000StreamIt

~ 800,000Trimaran

~3.5 millionOpen Research Compiler

~ 250,000SUIF

~ 1.2 millionGNU GCC

Lines of CodeCompiler
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Data Level Parallelism
Identify loops where each 
iteration can run in parallel

DOALL parallelism

What affects performance?
Parallelism Coverage
Granularity of Parallelism
Data Locality

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE

processors

TI
M

E



Parallelism Coverage
Amdahl’s Law
Performance improvement to be 
gained from faster mode of execution 
is limited by the fraction of the time 
the faster mode can be used

Find more parallelism
Interprocedural analysis
Alias analysis
Data-flow analysis
……

processors

More
processors



SUIF Parallelizer Results
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Granularity of Parallelism
Synchronization is expensive

Need to find very large 
parallel regions 
coarse-grain loop nests

Heroic analysis required

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE

processors
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M
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Granularity of Parallelism
Synchronization is expensive

Need to find very large 
parallel regions 
coarse-grain loop nests

Heroic analysis required

Single unanalyzable line 

turb3d in SPEC95fp



Granularity of Parallelism
Synchronization is expensive

Need to find very large 
parallel regions 
coarse-grain loop nests

Heroic analysis required

Single unanalyzable line 
Small Reduction in Coverage 
Drastic Reduction in Granularity

turb3d in SPEC95fp



SUIF Parallelizer Results
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Data Locality

Non-local data 
Stalls due to latency
Serialize when lack of 
bandwidth 

Data Transformations
Global impact
Whole program analysis 

A[0]
A[4]
A[8]
A[12]

A[1]
A[5]
A[9]
A[13]

A[2]
A[6]
A[10]
A[14]

A[3]
A[7]
A[11]
A[15]



DLP on Multiprocessors:
Current State

Huge body of work over the years.
Vectorization in the ’80s
High Performance Computing in ’90s

Commercial DLP compilers exist
But…only a very small user community

Can multicores make DLP 
mainstream?

?



Effectiveness

Main Issue
Parallelism Coverage

Compiling to Multiprocessors
Amdahl’s law

Many programs have no loop-level parallelism

Compiling to Multicores
Nothing much has changed 



Stability

Main Issue
Granularity of Parallelism

Compiling for Multiprocessors
Unpredictable, drastic granularity changes reduce the 
stability

Compiling for Multicores
Low latency granularity is less important 



Generality
Main Issue

Changes in general purpose programming styles over time 
impacts compilation

Compiling for Multiprocessors (In the good old days)
Mainly FORTRAN

Loop nests and Arrays

Compiling for Multicores
Modern languages/programs are hard to analyze

Aliasing (C, C++ and Java)
Complex structures (lists, sets, trees) 
Complex control (concurrency, recursion)
Dynamic (DLLs, Dynamically generated code)



Scalability

Main Issue
Whole program analysis and global transformations don’t 
scale

Compiling for Multiprocessors
Interprocedural analysis needed to improve granularity 
Most data transformations have global impact

Compiling for Multicores
High bandwidth and low latency no data transformations
Low latency granularity improvements not important 



Simplicity

Main Issue
Parallelizing compilers are exceedingly complex

Compiling for Multiprocessors
Heroic interprocedural analysis and global transformations 
are required because of high latency and low bandwidth

Compiling for Multicores
Hardware is a lot more forgiving…
But…modern languages and programs make life difficult 
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pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0 

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

Instruction Level parallelism 
on a  Unicore

tmp0 = (seed*3+2)/2
tmp1 = seed*v1+2
tmp2 = seed*v2 + 2
tmp3 = (seed*6+2)/3
v2 = (tmp1 - tmp3)*5
v1 = (tmp1 + tmp2)*3
v0 = tmp0 - v1
v3 = tmp3 - v2

Programs have ILP
Modern processors extract the ILP

Superscalars Hardware
VLIW Compiler
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Scalar Operand Network (SON)

• Moves results of an operation 
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?

pval5=seed.0*6.0

seed.0=seed



Scalar Operand Network (SON)

• Moves results of an operation 
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?
• Low latency from producer to 

consumer 

pval5=seed.0*6.0

seed.0=seed

pval5=seed.0*6.0

seed.0=seed



Scalar Operand Network (SON)

• Moves results of an operation 
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?
• Low latency from producer to 

consumer

• Low occupancy at the producer 
and consumer 

pval5=seed.0*6.0

seed.0=seed

Test lock
Branch
Test lock
Branch
Test lock
Branch
Test lock 
Branch
Read memory
pval5=seed.0*6.0

seed.0=seed
lock
Write mem
unlock



Scalar Operand Network (SON)

• Moves results of an operation 
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?
• Low latency from producer to 

consumer

• Low occupancy at the producer 
and consumer

• High bandwidth for multiple 
operations

pval5=seed.0*6.0

seed.0=seed

pval5=seed.0*6.0

seed.0=seed

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0 

tmp1=tmp1.3pval7=tmp1.3+tmp2.5



Is an Integrated Multcore Reedy to be 
a Scalar Operand Network?

Basic 
Multicore

Traditional 
Multiprocessor

Integrated
Multicore

VLIW
Unicore

001050
Occupancy
(instructions)

61621Bandwidth
(operands/cycle)

03460
Latency
(cycles)



Scalable Scalar Operand 
Network?

Unicores
N2 connectivity
Need to cluster 
introduces latency

Integrated Multicores
No bottlenecks in scaling 

Integrated
Multicore Unicore



Compiler Support for 
Instruction Level Parallelism

Accepted general 
purpose technique

Enhance the 
performance of 
superscalars
Essential for VLIW

Instruction Scheduling 
List scheduling or 
Software pipelining

pval5=seed.0*6.0
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tmp3.6=pval4/3.0

tmp3=tmp3.6
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tmp0.1=pval0/2.0

tmp0=tmp0.1
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tmp1.3=pval2+2.0 

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

seed.0=recv()
pval5=seed.0*6.0

pval4=pval5+2.0
tmp3.6=pval4/3.0

tmp3=tmp3.6
v2.7=recv()
v3.10=tmp3.6-v2.7

v3=v3.10

seed.0=recv()
pval2=seed.0*v1.2

tmp1.3=pval2+2.0 

send(tmp1.3)
tmp1=tmp1.3
tmp2.5=recv()
pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8

v0.9=tmp0.1-v1.8
v0=v0.9

tmp0.1=recv()

v1=v1.8

v0.9=tmp0.1-v1.8

v0=v0.9

tmp0.1=recv()



ILP on Integrated Multicores:
Space-Time Instruction Scheduling

seed.0=recv()
pval5=seed.0*6.0

pval4=pval5+2.0
tmp3.6=pval4/3.0

tmp3=tmp3.6

v2.7=recv()
v3.10=tmp3.6-v2.7

v3=v3.10

route(W,t)

route(W,S)

route(S,t)

send(seed.0)
pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

send(tmp0.1)
tmp0=tmp0.1

route(t,E)

route(t,E)

v2.4=v2

seed.0=recv(0)
pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5
send(tmp2.5)

tmp1.3=recv()
pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

Send(v2.7)
v2=v2.7

route(N,t)

route(t,E)

route(E,t)

route(t,E)

v1.2=v1

seed.0=recv()
pval2=seed.0*v1.2

tmp1.3=pval2+2.0 

send(tmp1.3)
tmp1=tmp1.3

tmp2.5=recv()
pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8

v0.9=tmp0.1-v1.8

v0=v0.9

route(N,t)

route(N,t)

route(W,N)

seed.0=seed

route(W,S)

route(W,S)

tmp0.1=recv()

route(t,W)

route(W,t)

route(W,N)

route(t,E)

Partition, placement, route 
and schedule
Similar to Clustered VLIW
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Handling Control Flow

Asynchronous global branching
Propagate the branch condition to all the tiles 
as part of the basic block schedule
When finished with the basic block execution 
asynchronously switch to another basic block 
schedule depending on the branch condition

• • •
• • •
br x

x = cmp a, b
• • •
• • •
br x • • •

br x
• • •
• • •
br x
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Success Criteria 

1. Effective
If ILP exists same

2. Stable
Localized optimization similar

3. General
Applies to same type of applications

4. Scalable
Local analysis similar 

5. Simple
Deeper analysis and more transformations
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Languages are out-of-touch with 
Architecture 

Modern
architecture

• Two choices:
• Develop cool architecture with 

complicated, ad-hoc language
• Bend over backwards to support

old languages like C/C++

C von-Neumann
machine



Supporting von Neumann 
Languages

Why C (FORTRAN, C++ etc.) became very successful?
Abstracted out the differences of  von Neumann machines

Register set structure
Functional units and capabilities
Pipeline depth/width
Memory/cache organization

Directly expose the common properties
Single memory image
Single control-flow
A clear notion of time

Can have a very efficient mapping to a von Neumann machine
“C is the portable machine language for von Numann machines”

Today von Neumann languages are a curse 
We have squeezed out all the performance out of C
We can build more powerful machines
But, cannot map C into next generation machines
Need better languages with more information for optimization 



New Languages for Cool 
Architectures

Processor specific languages
Not portable

Increase the burden on programmers
Many more tasks for the programmer (parallelism 
annotations, memory alias annotations)
But, no software engineering benefits

Assembly hacker mentality 
Worked so hard on putting architectural features
Don’t want compilers to squander it away
Proof-of-concept done in assembly

Architects don’t know how to design languages



What Motivates Language 
Designers

Primary Motivation Programmer Productivity
Raising the abstraction layer
Increasing the expressiveness 
Facilitating design, development, debugging, maintenance of 
large complex applications

Design Considerations
Abstraction Reduce the work programmers have to do
Malleablility Reduce the interdependencies 
Safety    Use types to prevent runtime errors
Portability Architecture/system independent

No consideration given for the architecture
For them, performance is a non-issue! 



Is There a Win-Win Solution

Languages that increase programmer 
productivity while making it easier to 
compile   



Example: StreamIt, 
A spatially-aware Language

A language for streaming applications
Provides high-level stream abstraction

Exposes Pipeline Parallelism
Improves programmer productivity

Breaks the von Neumann language barrier
Each filter has its own control-flow
Each filter has its own address space
No global time
Explicit data movement between filters
Compiler is free to reorganize the computation 



Example: Radar Array Front End
Splitter

FIRFilter FIRFilterFIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

FIRFilter FIRFilterFIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Joiner

Splitter

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Joiner



Radar Array Front End on Raw

Executing Instructions
Blocked on Network

Pipeline Stall



Bridging the Abstraction 
layers

StreamIt language exposes the data movement
Graph structure is architecture independent

Each architecture is different in granularity and topology
Communication is exposed to the compiler

The compiler needs to efficiently bridge the abstraction
Map the computation and communication pattern of the program 
to the tiles, memory and the communication substrate



Bridging the Abstraction 
layers

StreamIt language exposes the data movement
Graph structure is architecture independent

Each architecture is different in granularity and topology
Communication is exposed to the compiler

The compiler needs to efficiently bridge the abstraction
Map the computation and communication pattern of the program 
to the tiles, memory and the communication substrate

The StreamIt Compiler
Partitioning
Placement
Scheduling
Code generation



Optimized Performance for 
Radar Array Front End on Raw

Executing Instructions
Blocked on Network

Pipeline Stall



Performance
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Success Criteria 

1. Effective
Information available for more optimizations

2. Stable
Much more analyzable

3. General
Domain-Specific 

4. Scalable
No global data structures

5. Simple
Heroic analysis vs. more transformations

Von 
Neumann 
Languages

Stream
Language

Compiler for:



Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion



Overview of Success Criteria 

1. Effective

2. Stable

3. General

4. Scalable

5. Simple

Von 
Neumann 
Languages

Stream
Language



Can Compilers take on 
Multicores?

Success Criteria is Somewhat Mixed
But….

Don’t need to compete with unicores
Multicores will be available regardless 

New Opportunities
Architectural advances in integrated multicores
Domain specific languages    
Possible compiler support for using multicores for other 
than parallelism

Security Enforcement
Program Introspection
ISA extensions

http://cag.csail.mit.edu/commit
http://www.determina.com


